Exam 10: Parametric Equations; Polar Equations

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

The rectangular equation of the plane curve, with parametric equations x(t)=3t3,y(t)=t3x ( t ) = \sqrt [ 3 ] { 3 - t } , y ( t ) = \sqrt [ 3 ] { t } with t(,),t \in ( - \infty , \infty ), is

(Multiple Choice)
4.7/5
(39)

The conic section r=53+8sinθr = \frac { 5 } { 3 + 8 \sin \theta } is

(Multiple Choice)
4.8/5
(39)

The area of the surface generated by revolving the curve x(t)=t+2,y=t22+tx ( t ) = t + \sqrt { 2 } , \quad y = \frac { t ^ { 2 } } { 2 } + \sqrt { t } with t[2,2]t \in [ - \sqrt { 2 } , \sqrt { 2 } ] about the y-axis is

(Multiple Choice)
4.8/5
(46)

The rectangular equation of the plane curve, with parametric equations x(t)=tant,y(t)=sec2t,x ( t ) = \tan t , y ( t ) = \sec ^ { 2 } t, is

(Multiple Choice)
4.8/5
(35)

The polar equation that corresponds to the rectangular equation y=3xy = \sqrt { 3 } x is

(Multiple Choice)
4.8/5
(37)

If A is the area of the intersection of the regions enclosed by the graphs of r = 3 sin 2 θ\theta and r = 3 cos 2 θ\theta , then A is

(Multiple Choice)
4.8/5
(34)

If A is the area of the intersection of the regions enclosed by the graphs of r=2cosθr = 2 \cos \theta and r=2sinθ,r = 2 \sin \theta, then A is

(Multiple Choice)
4.7/5
(42)

Let x(t)=1et,y(t)=1+etx ( t ) = 1 - e ^ { t } , y ( t ) = 1 + e ^ { t } be the parametric equations of a curve. Then dydx\frac { d y } { d x } is

(Multiple Choice)
4.8/5
(39)

The points of intersections of r=22cosθr = 2 - 2 \cos \theta and r=2cosθr = 2 \cos \theta are

(Multiple Choice)
4.8/5
(33)

The polar equation that corresponds to the rectangular equation x2+y2=7xx ^ { 2 } + y ^ { 2 } = 7 x is

(Multiple Choice)
4.8/5
(30)

The conic section r=31sinθr = \frac { 3 } { 1 - \sin \theta } is

(Multiple Choice)
5.0/5
(40)

For a \neq 0, the polar curve r2=acos2θr ^ { 2 } = a \cos 2 \theta is a

(Multiple Choice)
4.9/5
(35)

The rectangular equation that corresponds to the polar equation r=4cosθr = 4 \cos \theta is

(Multiple Choice)
4.9/5
(38)

Let x(t)=t+sint,y(t)=costx ( t ) = t + \sin t , y ( t ) = \cos t be the parametric equations of a curve. Then dydx\frac { d y } { d x } is

(Multiple Choice)
4.7/5
(36)

Find the points on the curve x(t)=t39t,y(t)=t2x ( t ) = t ^ { 3 } - 9 t , y ( t ) = t ^ { 2 } where the tangent line is vertical.

(Multiple Choice)
4.9/5
(36)

Let x(t)=sint,y(t)=costtx ( t ) = \sin t , y ( t ) = \cos t - t be the parametric equations of a curve. Then dydx\frac { d y } { d x } is

(Multiple Choice)
4.7/5
(37)

The area of the surface generated by revolving the curve x(t)=t,y(t)=t2x ( t ) = t , \quad y ( t ) = t ^ { 2 } with t[0,2]t \in [ 0,2 ] about the y-axis is

(Multiple Choice)
4.9/5
(38)

Let x(t)=t31+t,y(t)=11+tx ( t ) = \frac { t ^ { 3 } } { 1 + t } , y ( t ) = \frac { 1 } { 1 + t } be the parametric equations of a curve. Then dydx\frac { d y } { d x } is

(Multiple Choice)
4.9/5
(41)

The area of the surface generated by revolving the curve x(t)=8sint,y=2tsin(2t)x ( t ) = 8 \sin t , y = 2 t - \sin ( 2 t ) with t[0,π2]t \in \left[ 0 , \frac { \pi } { 2 } \right] about the y-axis is

(Multiple Choice)
4.7/5
(31)

The graph of the parametric equations x(t)=5cost,y(t)=5sintx ( t ) = 5 \cos t , y ( t ) = 5 \sin t with t[π,2π]t \in [ \pi , 2 \pi ] is an arc of a circle centered at the origin with radius 5 from

(Multiple Choice)
4.8/5
(48)
Showing 61 - 80 of 132
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)