Exam 8: Techniques of Integration

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

The integral 1(x+2)(x2+1)dx\int \frac { 1 } { ( x + 2 ) \left( x ^ { 2 } + 1 \right) } d x is

(Multiple Choice)
4.7/5
(37)

The integral 1x2+2x15dx\int \frac { 1 } { x ^ { 2 } + 2 x - 15 } d x is

(Multiple Choice)
4.8/5
(38)

The integral 14x212x+5dx\int \frac { 1 } { 4 x ^ { 2 } - 12 x + 5 } d x is

(Multiple Choice)
4.8/5
(35)

The integral cos1xdx\int \cos ^ { - 1 } x d x is

(Multiple Choice)
4.8/5
(32)

Using Simpson's Rule with n = 4, the approximated value of 021x+1dx,\int _ { 0 } ^ { 2 } \frac { 1 } { x + 1 } d x, to three decimal places, is

(Multiple Choice)
4.8/5
(36)

Using Simpson's Rule with n = 4, the approximated value of 12exxdx,\int _ { 1 } ^ { 2 } \frac { e ^ { x } } { x } d x, to three decimal places, is

(Multiple Choice)
4.8/5
(32)

Using Simpson's Rule with n = 4, the approximated value of 3π22πcosxxdx,\int _ { \frac { 3 \pi } { 2 } } ^ { 2 \pi } \frac { \cos x } { x } d x, to three decimal places, is

(Multiple Choice)
4.9/5
(35)

Using Simpson's Rule with n = 4, the approximated value of 01ex2dx,\int _ { 0 } ^ { 1 } e ^ { - x ^ { 2 } } d x, to three decimal places, is

(Multiple Choice)
4.8/5
(32)

The integral 1(4x21)3dx\int \frac { 1 } { \sqrt { \left( 4 x ^ { 2 } - 1 \right) ^ { 3 } } } d x is

(Multiple Choice)
4.9/5
(41)
Showing 161 - 169 of 169
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)