Exam 8: Techniques of Integration

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

The integral 4x2+9dx\int \sqrt { 4 x ^ { 2 } + 9 } d x is

(Multiple Choice)
4.8/5
(25)

The integral x3+2x21x21dx\int \frac { x ^ { 3 } + 2 x ^ { 2 } - 1 } { x ^ { 2 } - 1 } d x is

(Multiple Choice)
4.9/5
(44)

The improper integral 13x3xdx\int _ { 1 } ^ { 3 } \frac { x } { \sqrt { 3 - x } } d x is

(Multiple Choice)
4.8/5
(36)

Suppose you want to use the Midpoint Rule with n = 4 and equal-length subintervals to approximate 16exdx\int _ { 1 } ^ { 6 } e ^ { - x } d x ? What are the sample points you would use to compute the heights of the rectangles used in this approximation

(Multiple Choice)
4.9/5
(36)

The integral xe2xdx\int x e ^ { - 2 x } d x is

(Multiple Choice)
4.8/5
(33)

The number Cof chipmunks in a small rural township t days after May 1, 2015, follows the logistic model dCdt=1.56C(1C2,000)\frac { d C } { d t } = 1.56 C \left( 1 - \frac { C } { 2,000 } \right) . The number of chipmunks recorded on May 1, 2015, was 775. What is the carrying capacity in this scenario?

(Multiple Choice)
4.8/5
(39)

The integral tan2xsec2xdx\int \tan ^ { 2 } x \sec ^ { 2 } x d x is

(Multiple Choice)
4.7/5
(40)

Suppose you want to use the Midpoint Rule with n = 4 and equal-length subintervals to approximate 16exdx\int _ { 1 } ^ { 6 } e ^ { - x } d x ? What is the approximation using the Midpoint Rule?

(Multiple Choice)
4.8/5
(44)

The integral 1(4x2)32dx\int \frac { 1 } { \left( 4 - x ^ { 2 } \right) ^ { \frac { 3 } { 2 } } } d x is

(Multiple Choice)
4.9/5
(40)

The integral 16x2+9dx\int \sqrt { 16 x ^ { 2 } + 9 } d x is

(Multiple Choice)
4.8/5
(27)

Using Simpson's Rule with n = 8, the approximated value of 0111+x3dx,\int _ { 0 } ^ { 1 } \frac { 1 } { \sqrt { 1 + x ^ { 3 } } } d x, to three decimal places, is

(Multiple Choice)
4.8/5
(35)

The integral log12xdx\int \log _ { \frac { 1 } { 2 } } x d x is

(Multiple Choice)
4.9/5
(36)

The integral xcosxdx\int x \cos x d x is

(Multiple Choice)
4.8/5
(31)

The integral x2xdx\int x 2 ^ { x } d x is

(Multiple Choice)
4.9/5
(49)

The integral x2x2+4dx\int \frac { x ^ { 2 } } { \sqrt { x ^ { 2 } + 4 } } d x is

(Multiple Choice)
4.8/5
(36)

The integral x+3x26x+10dx\int \frac { x + 3 } { \sqrt { x ^ { 2 } - 6 x + 10 } } d x is

(Multiple Choice)
4.9/5
(40)

The integral x29x2+1dx\int x ^ { 2 } \sqrt { 9 x ^ { 2 } + 1 } d x is

(Multiple Choice)
4.9/5
(38)

The integral sin3xcos3xdx\int \sin ^ { 3 } x \cos ^ { 3 } x d x is

(Multiple Choice)
4.8/5
(43)

The integral e2xcosxdx\int e ^ { 2 x } \cos x d x is

(Multiple Choice)
4.8/5
(32)

Using the Trapezoidal Rule with n = 4, the approximated value of 02ex22dx,\int _ { 0 } ^ { 2 } e ^ { - \frac { x ^ { 2 } } { 2 } } d x, to three decimal places, is

(Multiple Choice)
4.7/5
(32)
Showing 101 - 120 of 169
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)