Exam 3: Applications of the Derivative

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

If f has a local minimum at x = 2, then what can you say about f(2)f ^ { \prime } ( 2 ) ? What if you also know that f is differentiable at x = 2?

(Essay)
4.8/5
(34)

Sketch labeled graphs of each function f(x)=x2+5xf ( x ) = x ^ { 2 } + 5 x by hand. As part of your work make sign charts for the signs, roots and undefined points of f,f and ff , f ^ { \prime } \text { and } f

(Essay)
4.9/5
(32)

Find the location and values of any global extrema of f(x)=x2cosxf ( x ) = x - 2 \cos x on [π4,π2]\left[ - \frac { \pi } { 4 } , \frac { \pi } { 2 } \right]

(Essay)
4.9/5
(35)

Use the derivative f(x)=2xf ^ { \prime } ( x ) = \frac { 2 } { x } to find the local extrema and inflection points of ff

(Short Answer)
4.7/5
(36)

Find an equation of a possible function with a local minimum at x = 2 that is continuous but not differentiable at x = 2.

(Multiple Choice)
4.8/5
(36)

Find the critical points of f(x)=(2x+1)3f ( x ) = ( 2 x + 1 ) ^ { 3 }

(Multiple Choice)
4.9/5
(33)

Find limx02cosx2sin2x\lim _ { x \rightarrow 0 } \frac { 2 \cos x - 2 } { \sin 2 x }

(Multiple Choice)
4.8/5
(25)

Does f(x)=x+4f ( x ) = \sqrt { x + 4 } satisfy the hypothesis of the Mean Value Theorem on the interval [0, 5]. If it does, then find the exact values of all c(0,5)c \in ( 0,5 ) that satisfy the conclusion of the Mean Value Theorem.

(Multiple Choice)
4.7/5
(42)

Use the first derivative test to determine the local extrema of f(x)=(x2)2x+1f ( x ) = \frac { ( x - 2 ) ^ { 2 } } { x + 1 }

(Multiple Choice)
4.9/5
(26)

Determine the intervals on which f(x)=ex(x3)f ( x ) = e ^ { x } ( x - 3 ) is increasing and decreasing.

(Short Answer)
4.8/5
(35)

Sketch the graph of a continuous function, if possible, such that f<0 on (,0)f < 0 \text { on } ( - \infty , 0 ) , f>0 on (0,)f > 0 \text { on } ( 0 , \infty ) , and f>0 on (,1/3) and (1,)f ^ { \prime } > 0 \text { on } ( - \infty , 1 / 3 ) \text { and } ( 1 , \infty ) f<0 on (1/3,1)f ^ { \prime } < 0 \text { on } ( 1 / 3,1 ) and f>0 on (2/3,)f ^ { \prime \prime } > 0 \text { on } ( 2 / 3 , \infty ) and f<0 on (,2/3)f ^ { \prime \prime } < 0 \text { on } ( - \infty , 2 / 3 )

(Essay)
4.9/5
(32)

Determine the intervals on which f(x)=xx2+1f ( x ) = \frac { x } { x ^ { 2 } + 1 } is increasing and decreasing.

(Short Answer)
4.7/5
(37)

Use the derivative f(x)=x34x2+4xf ^ { \prime } ( x ) = x ^ { 3 } - 4 x ^ { 2 } + 4 x to find the local extrema and inflection points of ff

(Short Answer)
4.9/5
(28)

Find limx0xex1ex\lim _ { x \rightarrow 0 } \frac { x e ^ { x } } { 1 - e ^ { x } }

(Multiple Choice)
4.9/5
(30)

If a continuous and differentiable function f is equal to - 3 at x=2x = - 2 and x=2x = 2 , what can you say about ff ^ { \prime } on [-2, 2]?

(Essay)
4.8/5
(36)

Determine the intervals on which f(x)=ln(x2+2)f ( x ) = \ln \left( x ^ { 2 } + 2 \right) is increasing and decreasing.

(Short Answer)
4.9/5
(33)

Determine the intervals on which f(x)=sin2xf ( x ) = \sin ^ { 2 } x is increasing and decreasing.

(Essay)
4.9/5
(38)

Sketch the graph of a continuous function, if possible, such that f<0 on (2,)f < 0 \text { on } ( - 2 , \infty ) , f>0 on (,2)f > 0 \text { on } ( - \infty , - 2 ) , f<0 on (,)f ^ { \prime } < 0 \text { on } ( - \infty , \infty ) and f>0 on (,1)f ^ { \prime \prime } > 0 \text { on } ( - \infty , - 1 ) , but f<0 on (1,)f ^ { \prime \prime } < 0 \text { on } ( - 1 , \infty )

(Essay)
4.9/5
(30)

Determine the intervals on which f(x)=2x+1x24f ( x ) = \frac { 2 x + 1 } { x ^ { 2 } - 4 } is increasing and decreasing.

(Short Answer)
4.8/5
(41)

Find the point(s) on the curve y=x2y = x ^ { 2 } that is closest to the point (3, 0).

(Multiple Choice)
4.9/5
(42)
Showing 61 - 80 of 85
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)