Exam 13: Double and Triple Integrals

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Evaluate the iterated integral 010π0yexsin(y2)dzdydx\int _ { 0 } ^ { 1 } \int _ { 0 } ^ { \sqrt { \pi } } \int _ { 0 } ^ { y } e ^ { x } \sin \left( y ^ { 2 } \right) d z d y d x

Free
(Essay)
5.0/5
(36)
Correct Answer:
Verified

e1e - 1

Let T be the triangle with vertices (0, 0), (2, 4), and (2, 0). Let the density at each point of T be equal to 1. Find I0I _ { 0 } for T.

Free
(Multiple Choice)
4.8/5
(32)
Correct Answer:
Verified

B

Rewrite the following integral, switching the order of the y and z integrations. 024x24x24x2z24x2z2f(x,y,z)dydzdx\int _ { 0 } ^ { 2 } \int _ { - \sqrt { 4 - x ^ { 2 } } } ^ { \sqrt { 4 - x ^ { 2 } } } \int _ { - \sqrt { 4 - x ^ { 2 } - z ^ { 2 } } } ^ { \sqrt { 4 - x ^ { 2 } - z ^ { 2 } } } f ( x , y , z ) d y d z d x

Free
(Essay)
4.9/5
(45)
Correct Answer:
Verified

024x24x24x2y24x2y2f(x,y,z)dzdydx\int _ { 0 } ^ { 2 } \int _ { - \sqrt { 4 - x ^ { 2 } } } ^ { \sqrt { 4 - x ^ { 2 } } } \int _ { - \sqrt { 4 - x ^ { 2 } - y ^ { 2 } } } ^ { \sqrt { 4 - x ^ { 2 } - y ^ { 2 } } } f ( x , y , z ) d z d y d x

Evaluate the double integral Rxy+1dA\iint _ { R } x y + 1 d A where R={(x,y):1x3 and 1y2}R = \{ ( x , y ) : 1 \leq x \leq 3 \text { and } - 1 \leq \mathrm { y } \leq 2 \}

(Essay)
4.9/5
(43)

Find the area inside the circle x2+y2=4x ^ { 2 } + y ^ { 2 } = 4 and to the right of x=1x = 1

(Essay)
4.8/5
(37)

Evaluate the integral Rxsin(x3)dA\iint _ { R } x \sin \left( x ^ { 3 } \right) d A over the triangle with vertices (0, 0), (1, 3), and (1, -3).

(Multiple Choice)
4.8/5
(38)

Find the signed volume between the graph of the given function and the specified rectangle. f(x,y)=x2yf ( x , y ) = \frac { x ^ { 2 } } { y } and R={(x,y):0x2 and 1ye}R = \{ ( x , y ) : 0 \leq x \leq 2 \text { and } 1 \leq \mathrm { y } \leq e \}

(Essay)
4.9/5
(46)

Use cylindrical coordinates to find RdV\iiint _ { R } d V , where RR is the intersection of the sphere of radius 2 and the interior of the cone φ=π4\varphi = \frac { \pi } { 4 }

(Essay)
4.8/5
(38)

Find the mass of the solid in the first octant bounded by the coordinate planes and the plane x+y+z=1x + y + z = 1 , where the density is equal to the distance from the yz-plane.

(Essay)
4.8/5
(41)

Find the volume of the solid bounded by the graph of z=16x2y2z = 16 - x ^ { 2 } - y ^ { 2 } and the xy plane.

(Multiple Choice)
4.9/5
(36)

Evaluate the sum i=13j=12ji\sum _ { i = 1 } ^ { 3 } \sum _ { j = 1 } ^ { 2 } j ^ { i }

(Multiple Choice)
4.7/5
(33)

Evaluate the sum i=12j=13ji\sum _ { i = 1 } ^ { 2 } \sum _ { j = 1 } ^ { 3 } j ^ { i }

(Short Answer)
4.7/5
(31)

Give the spherical coordinates for the point with the rectangular coordinates (1,1,1)( 1,1,1 )

(Essay)
5.0/5
(26)

Set up Rf(x,y)dA\iint _ { R } f ( x , y ) d A as an iterated integral (or more, if necessary) where you integrate first with respect to yy , where R={(x,y):0x2 and 0y2x}R = \{ ( x , y ) : 0 \leq x \leq 2 \text { and } 0 \leq \mathrm { y } \leq 2 x \}

(Multiple Choice)
4.9/5
(40)

Evaluate the iterated integral 34121yxyzdzdydx\int _ { 3 } ^ { 4 } \int _ { 1 } ^ { 2 } \int _ { 1 } ^ { y } \frac { x } { y z } d z d y d x

(Multiple Choice)
4.8/5
(46)

Find the volume of the solid bounded by the graph of z=1x2y2z = 1 - x ^ { 2 } - y ^ { 2 } and the xy plane.

(Essay)
4.8/5
(38)

Find the volume of the solid bounded by the given function over the specified region Ω\Omega . f(x,y)=xeyf ( x , y ) = x e ^ { y } and Ω={(x,y):0x1 and x2y1}\Omega = \left\{ ( x , y ) : 0 \leq x \leq 1 \text { and } x ^ { 2 } \leq y \leq 1 \right\}

(Multiple Choice)
4.7/5
(37)

The functions x=x(u,v)x = x ( u , v ) and y=y(u,v)y = y ( u , v ) are given to determine transformations from the xy-coordinate system to a uv-coordinate system. Find the Jacobian of the transformation. x=2u-4v y=2u+4v

(Multiple Choice)
4.8/5
(34)

Find the volume of the solid bounded below by the graph of z=x2+y2z = x ^ { 2 } + y ^ { 2 } and above by the plane z=4z = 4

(Essay)
5.0/5
(37)

Evaluate the iterated integral 012311xyz2dzdydx\int _ { 0 } ^ { 1 } \int _ { 2 } ^ { 3 } \int _ { - 1 } ^ { 1 } x y z ^ { 2 } d z d y d x

(Essay)
5.0/5
(45)
Showing 1 - 20 of 84
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)