Exam 3: Applications of the Derivative

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Sketch labeled graphs of each function f(x)=1x2+2f ( x ) = \frac { - 1 } { x ^ { 2 } + 2 } by hand. As part of your work make sign charts for the signs, roots and undefined points of f,f and ff , f ^ { \prime } \text { and } f^ { \prime\prime }

Free
(Essay)
4.8/5
(37)
Correct Answer:
Verified

f<0 for all xf < 0 \text { for all } x f>0 on (0,) and f<0 on (,0)f ^ { \prime } > 0 \text { on } ( 0 , \infty ) \text { and } f ^ { \prime } < 0 \text { on } ( - \infty , 0 ) f<0 on (,23) and (23,);f>0 on (23,23)f ^ { \prime \prime } < 0 \text { on } \left( - \infty , - \sqrt { \frac { 2 } { 3 } } \right) \text { and } \left( \sqrt { \frac { 2 } { 3 } } , \infty \right) ; f ^ { \prime \prime } > 0 \text { on } \left( - \sqrt { \frac { 2 } { 3 } } , \sqrt { \frac { 2 } { 3 } } \right)

Find the critical points of f(x)=ln4x2xf ( x ) = \frac { \ln 4 x } { 2 x }

Free
(Multiple Choice)
4.7/5
(41)
Correct Answer:
Verified

C

Find limx0+xsinx\lim _ { x \rightarrow 0 ^ { + } } x ^ { \sin x }

Free
(Multiple Choice)
4.9/5
(38)
Correct Answer:
Verified

B

Find limx0+(e3x1)x\lim _ { x \rightarrow 0 ^ { + } } \left( e ^ { 3 x } - 1 \right) ^ { x }

(Multiple Choice)
4.8/5
(39)

Melissa wants to make a rectangular box with a square base and cover its top and bottom faces by velvet which will cost her $3 per square inch and the sides by silk which will cost her $5 per square inch. The box should have a volume of 1600 cubic inches. Find the dimensions of the box that will cost her the least amount of money.

(Essay)
4.8/5
(39)

Sketch labeled graphs of each function f(x)=xx2+4f ( x ) = \frac { x } { x ^ { 2 } + 4 } by hand. As part of your work make sign charts for the signs, roots and undefined points of f,f and ff , f ^ { \prime } \text { and } f^ { \prime\prime }

(Essay)
4.7/5
(26)

Use the derivative f(x)=x42f ^ { \prime } ( x ) = x ^ { 4 } - 2 to find the local extrema and inflection points of ff

(Essay)
4.9/5
(37)

Sketch labeled graphs of each function f(x)=ex2f ( x ) = e ^ { - x ^ { 2 } } by hand. As part of your work make sign charts for the signs, roots and undefined points of f,f and ff , f ^ { \prime } \text { and } f^ { \prime\prime }

(Essay)
4.9/5
(29)

Determine whether or not the function f(x)=cos2xf ( x ) = \cos 2 x satisfies the hypothesis of Rolle's Theorem on the interval [π4,3π4]\left[ \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } \right] If it does, find the exact values of all values of c(π4,3π4)c \in \left( \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } \right) that satisfy the conclusion of Rolle's Theorem.

(Multiple Choice)
4.7/5
(38)

Determine the intervals on which f(x)=x34x2+1f ( x ) = x ^ { 3 } - 4 x ^ { 2 } + 1 is increasing and decreasing.

(Short Answer)
4.9/5
(32)

Find the critical points of f(x)=sinxf ( x ) = \sin x

(Multiple Choice)
4.9/5
(38)

Find the critical points of f(x)=ex(x22x)f ( x ) = e ^ { x } \left( x ^ { 2 } - 2 x \right)

(Multiple Choice)
4.9/5
(34)

Find limx2x1+3x\lim _ { x \rightarrow \infty } \frac { 2 ^ { x } } { 1 + 3 ^ { x } }

(Multiple Choice)
4.7/5
(38)

Use a sign chart to determine the intervals on which f(x)=x33x+1f ( x ) = x ^ { 3 } - 3 x + 1 is concave up and concave down, and identify the locations of any inflection points.

(Essay)
4.8/5
(37)

Given u=u(t),v=v(t),w=w(t)u = u ( t ) , \quad v = v ( t ) , \quad w = w ( t ) are functions of t, calculate the derivative of the functions: (a) f(t)=(u+v)2+2twf ( t ) = ( u + v ) ^ { 2 } + 2 t w (b) f(t)=3u2vf ( t ) = \frac { 3 } { u ^ { 2 } v }

(Essay)
4.8/5
(32)

Sketch labeled graphs of each function f(x)=x3+2x2f ( x ) = x ^ { 3 } + 2 x ^ { 2 } by hand. As part of your work make sign charts for the signs, roots and undefined points of f,f and ff , f ^ { \prime } \text { and } f ^ { \prime\prime }

(Essay)
4.9/5
(31)

Use a sign chart to determine the intervals on which f(x)=1x2+4f ( x ) = \frac { 1 } { x ^ { 2 } + 4 } is concave up and concave down, and identify the locations of any inflection points.

(Essay)
4.8/5
(37)

Use a sign chart to determine the intervals on which f(x)=e2x(1ex)f ( x ) = e ^ { 2 x } \left( 1 - e ^ { x } \right) is concave up and concave down, and identify the locations of any inflection points.

(Essay)
4.9/5
(31)

A function f that is defined on [-1, 3] with f(1)=f(3)=2f ( - 1 ) = f ( 3 ) = 2 such that f is continuous everywhere, differentiable everywhere except at x=1x = 1 but fails the conclusion of Rolle's Theorem. Explain why it doesn't satisfy the Rolle's Theorem?

(Essay)
4.9/5
(40)

Find the location and values of any global extrema of f(x)=3x44x36x2+12xf ( x ) = 3 x ^ { 4 } - 4 x ^ { 3 } - 6 x ^ { 2 } + 12 x on the intervals: (a) (-2, 1](b) [-2, 1]

(Short Answer)
4.8/5
(35)
Showing 1 - 20 of 85
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)