Exam 56: The Binomial Theorem

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Use the Binomial Theorem to expand and simplify the expression.​ (x+7)3( \sqrt { x } + 7 ) ^ { 3 }

(Multiple Choice)
4.9/5
(26)

Calculate the binomial coefficient.​ (128)\left( \frac { 12 } { 8 } \right)

(Multiple Choice)
4.8/5
(33)

Evaluate using Pascal's triangle.​ (65)\left( \begin{array} { l } 6 \\5\end{array} \right)

(Multiple Choice)
4.8/5
(33)

Evaluate using Pascal's triangle.Show your work. (54)\left( \frac { 5 } { 4 } \right)

(Essay)
4.7/5
(35)

Calculate the binomial coefficient.​ 6C4{ } _ { 6 } C _ { 4 }

(Multiple Choice)
4.9/5
(36)

Use the Binomial Theorem to expand and simplify the expression. (4x+3y)4( 4 x + 3 y ) ^ { 4 }

(Multiple Choice)
4.8/5
(37)

Expand the binomial by using Pascal's Triangle to determine the coefficients.​ (2ts)5( 2 t - s ) ^ { 5 }

(Multiple Choice)
4.8/5
(43)

Use the binomial theorem to expand the binomial.​ (c+y)4( c + y ) ^ { 4 }

(Multiple Choice)
4.9/5
(38)

Use the Binomial Theorem to expand and simplify the expression. (x3/4+1)4\left( x ^ { 3 / 4 } + 1 \right) ^ { 4 }

(Multiple Choice)
4.9/5
(31)

Expand the expression in the difference quotient and simplify.​ f(x+h)f(x)h\frac { f ( x + h ) - f ( x ) } { h } Difference quotient f(x)=(x)3f ( x ) = ( x ) ^ { 3 }

(Multiple Choice)
4.7/5
(36)

​Use the Binominal Theorem to expand the complex number.Simplify your result.​ (46i)4( 4 - 6 i ) ^ { 4 }

(Multiple Choice)
4.9/5
(38)

Find the coefficient a of the term in the expansion of the binomial. Binomial Term (x3y)9( x - 3 y ) ^ { 9 } ax5y4a x ^ { 5 } y ^ { 4 }

(Multiple Choice)
4.8/5
(40)

Use the Binomial Theorem to expand and simplify the expression.​ (7a+b)3( 7 a + b ) ^ { 3 }

(Multiple Choice)
4.9/5
(33)

Find the coefficient a of the term in the expansion of the binomial.​ Binomial Terms (2x5y)9 ax4y5( 2 x - 5 y ) ^ { 9 } ~a x ^ { 4 } y ^ { 5 }

(Multiple Choice)
4.7/5
(34)

Find the coefficient a of the term in the expansion of the binomial.​ Binomial Terms (6xy)10 ax2y8( 6 x - y ) ^ { 10 }~ a x ^ { 2 } y ^ { 8 }

(Multiple Choice)
4.8/5
(45)

Use the Binomial Theorem to expand and simplify the expression.​ (2x+y)3( 2 x + y ) ^ { 3 }

(Multiple Choice)
4.9/5
(34)

Find the specified nth term in the expansion of the binomial.​ (x8y)5,n=3( x - 8 y ) ^ { 5 } , n = 3

(Multiple Choice)
4.9/5
(33)

Find the coefficient a of the term in the expansion of the binomial. Binomial Term (2x5y)8( 2 x - 5 y ) ^ { 8 } ax3y5a x ^ { 3 } y ^ { 5 }

(Multiple Choice)
4.8/5
(30)

Find the coefficient a of the term in the expansion of the binomial.​ Binomial Terms (x2+8)12ax8\left( x ^ { 2 } + 8 \right) ^ { 12 } a x ^ { 8 }

(Multiple Choice)
4.7/5
(51)

Evaluate using Pascal's triangle.​ 7C4{ } _ { 7 } C _ { 4 }

(Multiple Choice)
4.8/5
(34)
Showing 41 - 60 of 67
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)