Exam 49: The Inverse of a Square Matrix

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Solve the system of linear equations.​ {x2y=32x3y=4\left\{ \begin{array} { l } x - 2 y = 3 \\2 x - 3 y = - 4\end{array} \right.

Free
(Multiple Choice)
4.9/5
(31)
Correct Answer:
Verified

E

​Use an inverse matrix to solve (if possible)the system of linear equations.​ {1.8x5y=428.8x16y=5\left\{ \begin{array} { l l } 1.8 x - 5 y & = 4 \\28.8 x - 16 y & = 5\end{array} \right.

Free
(Multiple Choice)
4.9/5
(38)
Correct Answer:
Verified

E

Find the inverse of A.​ A=[412482001248]A = \left[ \begin{array} { c c c } - 4 & 12 & 4 \\8 & 20 & 0 \\12 & 4 & - 8\end{array} \right]

Free
(Multiple Choice)
4.9/5
(37)
Correct Answer:
Verified

D

​Solve the system of linear equations {4x18x24x38x4=012x120x28x312x4=158x120x28x320x4=104x1+16x2+16x3+44x4=0\left\{ \begin{array} { l l } 4 x _ { 1 } - 8 x _ { 2 } - 4 x _ { 3 } - 8 x _ { 4 } & = 0 \\12 x _ { 1 } - 20 x _ { 2 } - 8 x _ { 3 } - 12 x _ { 4 } & = - 15 \\8 x _ { 1 } - 20 x _ { 2 } - 8 x _ { 3 } - 20 x _ { 4 } & = 10 \\- 4 x _ { 1 } + 16 x _ { 2 } + 16 x _ { 3 } + 44 x _ { 4 } & = 0\end{array} \right. using the inverse matrix 14[24712103012973212311]\frac { 1 } { 4 } \left[ \begin{array} { c c c c } - 24 & 7 & 1 & - 2 \\- 10 & 3 & 0 & - 1 \\- 29 & 7 & 3 & - 2 \\12 & - 3 & - 1 & 1\end{array} \right] .

(Multiple Choice)
4.7/5
(33)

Use the inverse formula A1=1adbc[dbca]A ^ { - 1 } = \frac { 1 } { a d - b c } \left[ \begin{array} { c c } d & - b \\- c & a\end{array} \right] to find the inverse of the 2×2 matrix (if it exists).​ [67513]\left[ \begin{array} { c c } 6 & 7 \\- 5 & 13\end{array} \right]

(Multiple Choice)
4.7/5
(35)

A small home business creates muffins,bones,and cookies for dogs.In addition to other ingredients,each muffin requires 2 units of beef,3 units of chicken,and 2 units of liver.Each bone requires 1 unit of beef,1 unit of chicken,and 1 unit of liver.Each cookie requires 2 units of beef,1 unit of chicken,and 1.5 units of liver.Find the numbers of muffins,bones,and cookies that the company can create with the given amounts of ingredients. ​ 3,000 units of beef 2,950 units of chicken 2,900 units of liver ​

(Multiple Choice)
4.8/5
(31)

Find the inverse of the matrix [777213528214235]\left[ \begin{array} { c c c } 7 & 7 & 7 \\21 & 35 & 28 \\21 & 42 & 35\end{array} \right] . ​

(Multiple Choice)
4.9/5
(39)

Use the inverse formula A1=1adbc[dbca]A ^ { - 1 } = \frac { 1 } { a d - b c } \left[ \begin{array} { c c } d & - b \\- c & a\end{array} \right] to find the inverse of the 2×2 matrix (if it exists). ​​ [2315]\left[ \begin{array} { l l } 2 & 3 \\1 & 5\end{array} \right]

(Multiple Choice)
4.8/5
(30)

Find the inverse of the matrix [1622811]\left[ \begin{array} { c c } - 16 & 22 \\- 8 & 11\end{array} \right] (if it exists).

(Multiple Choice)
4.8/5
(37)

Use the inverse formula A1=1adbc[dbca]A ^ { - 1 } = \frac { 1 } { a d - b c } \left[ \begin{array} { c c } d & - b \\- c & a\end{array} \right] to find the inverse of the 2×2 matrix (if it exists). ​​ [1232]\left[ \begin{array} { c c } 1 & - 2 \\- 3 & 2\end{array} \right]

(Multiple Choice)
4.9/5
(24)

Solve the system of linear equations.​ {x2y=62x3y=4\left\{ \begin{array} { c } x - 2 y = 6 \\2 x - 3 y = 4\end{array} \right. ​ ​

(Multiple Choice)
4.8/5
(36)

​Solve the system of linear equations {4x+4y=38x20y=9\left\{ \begin{array} { l } 4 x + 4 y = 3 \\8 x - 20 y = - 9\end{array} \right. using an inverse matrix.

(Multiple Choice)
4.8/5
(42)

Find the inverse of the matrix [2154]\left[ \begin{array} { c c } - 2 & 1 \\5 & 4\end{array} \right] (if it exists).

(Multiple Choice)
4.8/5
(35)

Find the inverse of the matrix (if it exists).​ [3004]\left[ \begin{array} { l l } 3 & 0 \\0 & 4\end{array} \right]

(Multiple Choice)
4.9/5
(41)

Solve the system of linear equations.​ {x2y=52x3y=10\left\{ \begin{array} { l l } x - 2 y & = 5 \\2 x - 3 y & = 10\end{array} \right.

(Multiple Choice)
4.8/5
(33)

Consider a person who invests in AAA-rated bonds,A-rated bonds,and B-rated bonds.The average yields are 6.5% on AAA bonds,7% on A bonds,and 9% on B bonds.The person invests twice as much in B bonds as in A bonds.Let x,y and z represent the amounts invested in AAA,A,and B bonds,respectively. Total Investment Annual Return $32,000 2465 {x+y+z=32,000 (total investment) 0.065x+0.07y+0.09z=2465 (annual retur) 2yz=0\left\{ \begin{array} { c l } x + y + z & = 32,000 \text { (total investment) } \\0.065 x + 0.07 y + 0.09 z & = 2465 \text { (annual retur) } \\2 y - z & = 0\end{array} \right. Use the inverse of the coefficient matrix of this system to find the amount invested in each type of bond. ​

(Multiple Choice)
4.8/5
(33)

Use the inverse formula A1=1adbc[dbca]A ^ { - 1 } = \frac { 1 } { a d - b c } \left[ \begin{array} { c c } d & - b \\- c & a\end{array} \right] to find the inverse of the matrix (if it exists). ​​ [7979]\left[ \begin{array} { c c } - 7 & - 9 \\7 & 9\end{array} \right]

(Multiple Choice)
4.9/5
(30)

Solve the system of linear equations.​ {x+y+z=73x+5y+4z=83x+6y+5z=0\left\{ \begin{array} { c } x + y + z = - 7 \\3 x + 5 y + 4 z = 8 \\3 x + 6 y + 5 z = 0\end{array} \right.

(Multiple Choice)
4.7/5
(35)

Show that B is the inverse of A.Show all your work. A=[2943],B=[114314221121]A = \left[ \begin{array} { c c } 2 & 9 \\- 4 & 3\end{array} \right] , B = \left[ \begin{array} { c c } \frac { 1 } { 14 } & - \frac { 3 } { 14 } \\\frac { 2 } { 21 } & \frac { 1 } { 21 }\end{array} \right]

(Essay)
4.8/5
(37)

The table shows the enrollment projections (in millions)for public universities in the United States for the years 2010 through 2012. Year Enrollment projections 2010 13)83 2011 14)07 2012 14)23 The data can be modeled by the quadratic function y=at2+bt+cy=a t^{2}+b t+c .Create a system of linear equations for the data.Let t represent the year,with t = 10 corresponding to 2010.

(Multiple Choice)
4.8/5
(30)
Showing 1 - 20 of 59
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)