Exam 64: Parametric Equations

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Select the curve represented by the parametric equations. ​ Prolate cycloid: x=Θ43sinΘ,y=143cosθx = \Theta - \frac { 4 } { 3 } \sin \Theta , y = 1 - \frac { 4 } { 3 } \cos \theta

Free
(Multiple Choice)
4.9/5
(29)
Correct Answer:
Verified

A

Find a set of parametric equations for the rectangular equation.​ t=5-x y=-3 ​

Free
(Multiple Choice)
4.9/5
(30)
Correct Answer:
Verified

D

Select the parametric equations matching with the following graph.​ Select the parametric equations matching with the following graph.​   ​

Free
(Multiple Choice)
4.7/5
(29)
Correct Answer:
Verified

D

A projectile is launched at a height of h feet above the ground at an angle of θ\theta with the horizontal.The initial velocity is v0v _ { 0 } feet per second,and the path of the projectile is modeled by the parametric equations x=(v0cosθ)t and y=h+(v0sinθ)t16t2x = \left( v _ { 0 } \cos \theta \right) t \text { and } y = h + \left( v _ { 0 } \sin \theta \right) t - 16 t ^ { 2 } . Select the correct graph of the path of a projectile launched from ground level at the value of θ\theta and v0v _ { 0 } .​ θ=15,v0=80\theta = 15 ^ { \circ } , v _ { 0 } = 80 feet per second ​

(Multiple Choice)
4.7/5
(39)

Eliminate the parameter and write the corresponding rectangular equation whose graph represents the curve.​ x=3(t+1)x = 3 ( t + 1 ) y=t3y = | t - 3 |

(Multiple Choice)
4.7/5
(43)

Eliminate the parameter and write the corresponding rectangular equation whose graph represents the curve.​ x=cosθx = \cos \theta y=5sin2θy = 5 \sin 2 \theta

(Multiple Choice)
4.8/5
(32)

Select the curve represented by the parametric equations.​ x=t+1x = t + 1 y=tt+1y = \frac { t } { t + 1 }

(Multiple Choice)
4.9/5
(42)

Select the curve represented by the parametric equations.​ x=t+2x = t + 2 y=t2y = t ^ { 2 }

(Multiple Choice)
4.7/5
(41)

Select the curve represented by the parametric equations.(indicate the orientation of the curve)​ x=3-4t y=4+3t ​

(Multiple Choice)
4.9/5
(35)

Using following result find a set of parametric equation of the line.​ x=x1+t(x2x1),y=y1+t(y2y1)x = x _ { 1 } + t \left( x _ { 2 } - x _ { 1 } \right) , y = y _ { 1 } + t \left( y _ { 2 } - y _ { 1 } \right) ​ Line: passes through (9,2)( 9,2 ) and (3,9)( - 3,9 )

(Multiple Choice)
4.9/5
(39)

Eliminate the parameter and write the corresponding rectangular equation whose graph represents the curve.​ x=t+2x = t + 2 y=t2y = t ^ { 2 }

(Multiple Choice)
4.7/5
(30)

Eliminate the parameter and write the corresponding rectangular equation whose graph represents the curve.​ x=1+3cosθx = 1 + 3 \cos \theta y=1+5sinθy = 1 + 5 \sin \theta

(Multiple Choice)
4.9/5
(39)

Using following result find a set of parametric equation of the line.​ x=x1+t(x2x1),y=y1+t(y2y1)x = x _ { 1 } + t \left( x _ { 2 } - x _ { 1 } \right) , y = y _ { 1 } + t \left( y _ { 2 } - y _ { 1 } \right) ​ Line: passes through (0,0)and (5,8)( 5,8 )

(Multiple Choice)
4.9/5
(38)

Select the parametric equations matching with the following graph.​ Select the parametric equations matching with the following graph.​   ​

(Multiple Choice)
4.8/5
(36)

Eliminate the parameter and write the corresponding rectangular equation whose graph represents the curve.​ x=tx = \sqrt { t } y=4ty = 4 - t

(Multiple Choice)
4.9/5
(41)

Select the curve represented by the parametric equations.​ x=t1x = t - 1 y=tt1y = \frac { t } { t - 1 }

(Multiple Choice)
4.9/5
(34)

Select the curve represented by the parametric equations. ​ Cycloid: x=Θ+sinθ,y=4cosθx = \Theta + \sin \theta , y = 4 - \cos \theta

(Multiple Choice)
4.8/5
(30)

Find a set of parametric equations for the rectangular equation.​ t=2xt = 2 - x y=x2+5y = x ^ { 2 } + 5

(Multiple Choice)
4.8/5
(35)

Using following result find a set of parametric equation of conic. ​ Hyperbola: x=h+asecθ,y=k+btanθx = h + a \sec \theta , y = k + b \tan \theta ​ Hyperbola: vertices: (±4,0)( \pm 4,0 ) ;foci: (±5,0)( \pm 5,0 )

(Multiple Choice)
4.9/5
(28)

Select the curve represented by the parametric equations. ​ Prolate cycloid: x=3Θ7sinθ,y=37cosθx = 3 \Theta - 7 \sin \theta , y = 3 - 7 \cos \theta

(Multiple Choice)
4.8/5
(42)
Showing 1 - 20 of 50
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)