Exam 31: Using Fundamental Identities

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

By using a graphing utility to complete the following table.Round your answer to four decimal places. x 0.8 1.0 1.2 1.4 1.6 1.8 2.0 \@cdots \@cdots \@cdots \@cdots \@cdots \@cdots \@cdots \ldots \ldots \ldots \ldots \ldots \ldots \@cdots y1=cosx1sinx,y2=1+sinxcosxy _ { 1 } = \frac { \cos x } { 1 - \sin x } , y _ { 2 } = \frac { 1 + \sin x } { \cos x }

Free
(Multiple Choice)
4.9/5
(42)
Correct Answer:
Verified

E

Use the trigonometric substitution to rewrite the algebraic expression as a trigonometric function of θ,where 0<θ<π20 < \theta < \frac { \pi } { 2 } . 11x2,x=11sinθ\sqrt { 11 - x ^ { 2 } } , x = \sqrt { 11 } \sin \theta

Free
(Multiple Choice)
4.8/5
(38)
Correct Answer:
Verified

B

Find the rate of change of the function f(x)=cscxcosxf ( x ) = - \csc x - \cos x . ​

Free
(Multiple Choice)
4.7/5
(38)
Correct Answer:
Verified

E

Which of the following is equivalent to the given expression? cos2x1+sinx\frac { \cos ^ { 2 } x } { 1 + \sin x }

(Multiple Choice)
4.9/5
(28)

Factor;then use fundamental identities to simplify the expression below and determine which of the following is not equivalent.​ sin3xsin2xsinx+1\sin ^ { 3 } x - \sin ^ { 2 } x - \sin x + 1

(Multiple Choice)
4.8/5
(42)

Use the trigonometric substitution to rewrite the algebraic expression as a trigonometric function of θ,where π2<θ<π2- \frac { \pi } { 2 } < \theta < \frac { \pi } { 2 } .Then find sin θ and cos θ.​ 33=819x2,x=3cosθ3 \sqrt { 3 } = \sqrt { 81 - 9 x ^ { 2 } } , x = 3 \cos \theta

(Multiple Choice)
4.9/5
(31)

Rewrite lnsinθlncosθ\ln | \sin \theta | - \ln | \cos \theta | as a single logarithm and then simplify the result. ​

(Multiple Choice)
4.9/5
(33)

Rewrite lnsecθ+lnsinθ\ln | \sec \theta | + \ln | \sin \theta | as a single logarithm and then simplify the result.

(Multiple Choice)
4.8/5
(37)

Use the given values to evaluate (if possible)three trigonometric functions sin x,cos x,cot x.​ cscx=419,tanx=940\csc x = \frac { 41 } { 9 } , \tan x = \frac { 9 } { 40 }

(Multiple Choice)
4.9/5
(27)

If x = 2 tan θ,use trigonometric substitution to write 4+x2\sqrt { 4 + x ^ { 2 } } as a trigonometric function of θ,where π2<θ<π2- \frac { \pi } { 2 } < \theta < \frac { \pi } { 2 } . ​

(Multiple Choice)
4.8/5
(34)

If x = 2 tan θ,use trigonometric substitution to write 4+x2\sqrt { 4 + x ^ { 2 } } as a trigonometric function of θ,where 0<θ<π20 < \theta < \frac { \pi } { 2 } . ​

(Multiple Choice)
4.7/5
(27)

Use a graphing utility to determine which of the trigonometric functions is equal to the following expression. cscxsinxcotx\frac { \csc x - \sin x } { \cot x }

(Multiple Choice)
4.7/5
(33)

Use the trigonometric substitution to rewrite the algebraic expression as a trigonometric function of θ,where 0<x<π20 < x < \frac { \pi } { 2 } . x2+25,x=5tanθ\sqrt { x ^ { 2 } + 25 } , x = 5 \tan \theta

(Multiple Choice)
4.9/5
(32)

The forces acting on an object weighing W units on an inclined plane positioned at an angle of θ with the horizontal (see figure)are modeled by​ μWsinθ=Wtanθ\mu W \sin \theta = W \tan \theta ​ where μ is the coefficient of friction.Solve the equation for μ and simplify the result.​  The forces acting on an object weighing W units on an inclined plane positioned at an angle of θ with the horizontal (see figure)are modeled by​  \mu W \sin \theta = W \tan \theta  ​ where μ is the coefficient of friction.Solve the equation for μ and simplify the result.​   ​

(Multiple Choice)
4.8/5
(26)

Factor;then use fundamental identities to simplify the expression below and determine which of the following is not equivalent. ​​ cot2α+cot2αtan2α\cot ^ { 2 } \alpha + \cot ^ { 2 } \alpha \cdot \tan ^ { 2 } \alpha

(Multiple Choice)
4.8/5
(36)

Factor;then use fundamental identities to simplify the expression below and determine which of the following is not equivalent. sin3xsin2xsinx+1\sin ^ { 3 } x - \sin ^ { 2 } x - \sin x + 1

(Multiple Choice)
4.8/5
(32)

By using a graphing utility to complete the following table.Round your answer to two decimal places. x 0.2 0.4 0.6 0.8 1 1.2 1.4 - - - - - - - - - - - - - - y1=sec4xsec2x,y2=tan2xsec2xy _ { 1 } = \sec ^ { 4 } x - \sec ^ { 2 } x , y _ { 2 } = \tan ^ { 2 } x \sec ^ { 2 } x

(Multiple Choice)
4.9/5
(43)

Use the fundamental identities to simplify the expression. ​ Cot θ sec θ ​

(Multiple Choice)
4.8/5
(39)

Use fundamental identities to simplify the expression below and then determine which of the following is not equivalent. sin(π2x)cscx\sin \left( \frac { \pi } { 2 } - x \right) \csc x

(Multiple Choice)
4.9/5
(36)

Use the given values to evaluate (if possible)three trigonometric functions cos x,csc x,tan x.​ secx=3,sinx=63\sec x = \sqrt { 3 } , \sin x = - \frac { \sqrt { 6 } } { 3 }

(Multiple Choice)
4.8/5
(38)
Showing 1 - 20 of 60
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)