Exam 63: Rotation of Conics

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

The xyx ^ { \prime } y ^ { \prime } -coordinate system has been rotated θ\theta degrees from the xyx y -coordinate system.The coordinates of a point in the xyx y -coordinate system are given.Find the coordinates of the point in the rotated coordinate system.​ θ=30\theta = 30 ^ { \circ } , (1,3)( 1,3 )

Free
(Multiple Choice)
4.8/5
(36)
Correct Answer:
Verified

C

Use the discriminant to classify the graph.​ x210xy8y218=0x ^ { 2 } - 10 x y - 8 y ^ { 2 } - 18 = 0

Free
(Multiple Choice)
4.9/5
(23)
Correct Answer:
Verified

B

Determine the angle θ\theta through which the axes are rotated.Round your answer to two decimal places.​ 24x2+66xy+13y2=3224 x ^ { 2 } + 66 x y + 13 y ^ { 2 } = 32

Free
(Multiple Choice)
4.8/5
(32)
Correct Answer:
Verified

D

Find the lengths of the major and minor axes of the ellipse graphed by following equation.​ (x)21+(y)236=1\frac { \left( x ^ { \prime } \right) ^ { 2 } } { 1 } + \frac { \left( y ^ { \prime } \right) ^ { 2 } } { 36 } = 1

(Multiple Choice)
4.8/5
(41)

Select the graph of the following equation.​ y=x±5y = x \pm 5

(Multiple Choice)
4.9/5
(30)

​Determine the angle θ\theta through which the axes are rotated.Round your answer to two decimal places. 3x29xy+11y2+(3109)x(510+10)y=913 x ^ { 2 } - 9 x y + 11 y ^ { 2 } + ( 3 \sqrt { 10 } - 9 ) x - ( 5 \sqrt { 10 } + 10 ) y = 91 ​​

(Multiple Choice)
4.9/5
(26)

Use the Quadratic Formula to solve for yy .​ 5x2+10xy+11y2+9x10y42=05 x ^ { 2 } + 10 x y + 11 y ^ { 2 } + 9 x - 10 y - 42 = 0

(Multiple Choice)
5.0/5
(39)

The xyx ^ { \prime } y ^ { \prime } -coordinate system has been rotated θ\theta degrees from the xyx y -coordinate system.The coordinates of a point in the xyx y -coordinate system are given.Find the coordinates of the point in the rotated coordinate system.​ θ=45\theta = 45 ^ { \circ } , (9,2)( 9,2 )

(Multiple Choice)
4.8/5
(41)

Select the graph of degenerate conic.​ x2+y22x+16y+65=0x ^ { 2 } + y ^ { 2 } - 2 x + 16 y + 65 = 0

(Multiple Choice)
4.9/5
(33)

Select the graph of the following equation,showing both sets of axes.​ (x)28(y)28=1\frac { \left( x ^ { \prime } \right) ^ { 2 } } { 8 } - \frac { \left( y ^ { \prime } \right) ^ { 2 } } { 8 } = 1

(Multiple Choice)
4.7/5
(43)

Use the Quadratic Formula to solve for yy .​ 81x290xy+25y2+10y=081 x ^ { 2 } - 90 x y + 25 y ^ { 2 } + 10 y = 0

(Multiple Choice)
4.9/5
(31)

Use the Quadratic Formula to solve for yy .​ x212xy10y222=0x ^ { 2 } - 12 x y - 10 y ^ { 2 } - 22 = 0

(Multiple Choice)
4.9/5
(32)

Use a graphing utility to graph the conic.​ x24xy+2y2=8x ^ { 2 } - 4 x y + 2 y ^ { 2 } = 8

(Multiple Choice)
4.8/5
(35)

Determine the angle θ\theta through which the axes are rotated.Round your answer to two decimal places.​ 29x2+92xy+6y2=5129 x ^ { 2 } + 92 x y + 6 y ^ { 2 } = 51

(Multiple Choice)
4.9/5
(38)

Use the discriminant to classify the graph.​ 5x2+10xy+11y2+9x10y72=05 x ^ { 2 } + 10 x y + 11 y ^ { 2 } + 9 x - 10 y - 72 = 0

(Multiple Choice)
4.9/5
(28)

The xyx ^ { \prime } y ^ { \prime } -coordinate system has been rotated θ\theta degrees from the xyx y -coordinate system.The coordinates of a point in the xyx y -coordinate system are given.Find the coordinates of the point in the rotated coordinate system.​ θ=90\theta = 90 ^ { \circ } , (0,3)( 0,3 )

(Multiple Choice)
4.9/5
(42)

Identify the conic by writing the equation in standard form. 10y220x2+80y+360x1485=010 y ^ { 2 } - 20 x ^ { 2 } + 80 y + 360 x - 1485 = 0

(Multiple Choice)
4.9/5
(27)

Find any points of intersection of the graphs algebraically.​ -++2x-7y+6=0 +-2x-7y+6=0 ​

(Multiple Choice)
4.9/5
(32)

Rotate the axes to eliminate the xy-term in the equation.Then write the equation in standard form.​ xy+3=0x y + 3 = 0

(Multiple Choice)
4.8/5
(32)

Use the discriminant to classify the graph.​ 16x25xy+10y244=016 x ^ { 2 } - 5 x y + 10 y ^ { 2 } - 44 = 0

(Multiple Choice)
4.8/5
(46)
Showing 1 - 20 of 52
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)