Exam 56: The Binomial Theorem

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Expand the binomial by using Pascal's triangle to determine the coefficients.Show your work. (3x2y)6( 3 x - 2 y ) ^ { 6 }

Free
(Essay)
5.0/5
(39)
Correct Answer:
Verified

    \begin{array} { l }  ( 3 x - 2 y ) ^ { 6 } = ( 1 ) ( 3 x ) ^ { 6 } + ( 6 ) ( 3 x ) ^ { 5 } ( - 2 y ) + ( 15 ) ( 3 x ) ^ { 4 } ( - 2 y ) ^ { 2 } + ( 20 ) ( 3 x ) ^ { 3 } ( - 2 y ) ^ { 3 } + \\ ( 15 ) ( 3 x ) ^ { 2 } ( - 2 y ) ^ { 4 } + ( 6 ) ( 3 x ) ( - 2 y ) ^ { 5 } + ( - 2 y ) ^ { 6 } \\ = 729 x ^ { 6 } - 2916 x ^ { 5 } y + 4860 x ^ { 4 } y ^ { 2 } - 4320 x ^ { 3 } y ^ { 3 } + 2160 x ^ { 2 } y ^ { 4 } - 576 x y ^ { 5 } + 64 y ^ { 6 } \end{array}
(3x2y)6=(1)(3x)6+(6)(3x)5(2y)+(15)(3x)4(2y)2+(20)(3x)3(2y)3+(15)(3x)2(2y)4+(6)(3x)(2y)5+(2y)6=729x62916x5y+4860x4y24320x3y3+2160x2y4576xy5+64y6\begin{array} { l } ( 3 x - 2 y ) ^ { 6 } = ( 1 ) ( 3 x ) ^ { 6 } + ( 6 ) ( 3 x ) ^ { 5 } ( - 2 y ) + ( 15 ) ( 3 x ) ^ { 4 } ( - 2 y ) ^ { 2 } + ( 20 ) ( 3 x ) ^ { 3 } ( - 2 y ) ^ { 3 } + \\( 15 ) ( 3 x ) ^ { 2 } ( - 2 y ) ^ { 4 } + ( 6 ) ( 3 x ) ( - 2 y ) ^ { 5 } + ( - 2 y ) ^ { 6 } \\= 729 x ^ { 6 } - 2916 x ^ { 5 } y + 4860 x ^ { 4 } y ^ { 2 } - 4320 x ^ { 3 } y ^ { 3 } + 2160 x ^ { 2 } y ^ { 4 } - 576 x y ^ { 5 } + 64 y ^ { 6 }\end{array}

Evaluate using Pascal's Triangle.​ (85)\left( \frac { 8 } { 5 } \right)

Free
(Multiple Choice)
4.7/5
(33)
Correct Answer:
Verified

C

Evaluate using Pascal's Triangle.​ (87)\left( \frac { 8 } { 7 } \right)

Free
(Multiple Choice)
4.9/5
(34)
Correct Answer:
Verified

A

Use the Binomial Theorem to expand and simplify the expression.​ (a+7)5( a + 7 ) ^ { 5 }

(Multiple Choice)
4.9/5
(38)

Evaluate using Pascal's triangle.Show your work. 8C2{ } _ { 8 } C _ { 2 }

(Essay)
4.7/5
(34)

Find the specified nth term in the expansion of the binomial.​ (x+y)10,n=6( x + y ) ^ { 10 } , n = 6

(Multiple Choice)
4.9/5
(40)

Calculate the binomial coefficient: 4C3{ } _ { 4 } C _ { 3 }

(Multiple Choice)
5.0/5
(31)

Use the Binomial Theorem to expand and simplify the expression.​ (a+8)4( a + 8 ) ^ { 4 }

(Multiple Choice)
5.0/5
(32)

Use the Binomial Theorem to expand and simplify the expression.​ (x+5)6( x + 5 ) ^ { 6 }

(Multiple Choice)
4.8/5
(33)

Use the binomial theorem to expand the binomial.​ (a+3t)3( a + 3 t ) ^ { 3 }

(Essay)
4.8/5
(41)

Use the Binomial Theorem to expand the complex number.Simplify your result.​ (5+i)4( 5 + i ) ^ { 4 }

(Multiple Choice)
4.7/5
(32)

Find the specified nth term in the expansion of the binomial.​ (4a+5b)5,n=5( 4 a + 5 b ) ^ { 5 } , n = 5

(Multiple Choice)
4.9/5
(34)

Use the Binomial Theorem to expand and simplify the expression.​ (r+5s)6( r + 5 s ) ^ { 6 }

(Multiple Choice)
4.9/5
(40)

Use the Binomial Theorem to expand and simplify the expression.​ (u3/5+5)5\left( u ^ { 3 / 5 } + 5 \right) ^ { 5 }

(Multiple Choice)
4.9/5
(39)

Use the Binomial Theorem to expand and simplify the expression. (x3/4+5)4\left( x ^ { 3 / 4 } + 5 \right) ^ { 4 }

(Multiple Choice)
4.7/5
(32)

​Use the Binominal Theorem to expand the complex number.Simplify your result.​ (32i)4( 3 - 2 i ) ^ { 4 }

(Multiple Choice)
4.9/5
(41)

Calculate the binomial coefficient: (116)\left( \begin{array} { c } 11 \\6\end{array} \right)

(Multiple Choice)
5.0/5
(34)

Use the Binomial Theorem to expand and simplify the expression.​ (x+6)4( x + 6 ) ^ { 4 }

(Multiple Choice)
4.8/5
(29)

The probability that a basketball player will make a given free throw is 710\frac { 7 } { 10 } .To find the probability that the player makes exactly 7 out of her next 10 free throws,evaluate the term 10C7(710)7(310)3{ } _ { 10 } C _ { 7 } \left( \frac { 7 } { 10 } \right) ^ { 7 } \left( \frac { 3 } { 10 } \right) ^ { 3 } in the expansion of (710+310)10\left( \frac { 7 } { 10 } + \frac { 3 } { 10 } \right) ^ { 10 } .Round to four decimal places.

(Multiple Choice)
5.0/5
(33)

Use the Binomial Theorem to expand and simplify the expression. (r+2)5( r + 2 ) ^ { 5 }

(Multiple Choice)
4.8/5
(31)
Showing 1 - 20 of 67
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)