Exam 39:Vectors and Dot Products

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Use the vectors u=4,5\mathbf { u } = \langle 4,5 \rangle , v=6,5\mathbf { v } = \langle - 6,5 \rangle ,and w=6,4\mathbf { w } = \langle 6 , - 4 \rangle to find the indicated quantity.State whether the result is a vector or a scalar.​ uvuw\langle \mathbf { u } \cdot \mathbf { v } \rangle - \langle \mathbf { u } \cdot \mathbf { w } \rangle

(Multiple Choice)
4.9/5
(37)

Determine whether u are v and orthogonal,parallel,or neither. u=4,7,v=14,24\mathbf { u } = \langle - 4 , - 7 \rangle , \mathbf { v } = \langle 14,24 \rangle

(Multiple Choice)
4.9/5
(38)

Use the dot product to find the magnitude of u.​ u=2,9\mathbf { u } = \langle 2 , - 9 \rangle

(Multiple Choice)
4.8/5
(40)

Find the angle between the vectors u and v if u=3,4\mathbf { u } = \langle 3,4 \rangle ,and v=1,2\mathbf { v } = \langle - 1 , - 2 \rangle Round answer to two decimal places.

(Multiple Choice)
4.8/5
(35)

Use the dot product to find the magnitude of u if u=5i2j\mathbf { u } = - 5 \mathbf { i } - 2 \mathbf { j }

(Multiple Choice)
4.9/5
(38)

Use the vectors u=3,6\mathbf { u } = \langle 3,6 \rangle , v=6,5\mathbf { v } = \langle - 6,5 \rangle to find the indicated quantity.State whether the result is a vector or a scalar.​ (uv)v( \mathbf { u } \cdot \mathbf { v } ) \mathbf { v }

(Multiple Choice)
4.9/5
(35)

Given vectors u=2,3\mathbf { u } = \langle - 2 , - 3 \rangle and v=1,3v = \langle 1,3 \rangle determine the quantity indicated below. u2v\mathbf { u } \cdot 2 \mathbf { v }

(Multiple Choice)
4.9/5
(32)

Find the angle θ between the vectors. ​​ =-7-8 =-9+2 ​ (Round the answer to 2 decimal places. ) ​

(Multiple Choice)
4.7/5
(40)

Determine u.vu.v if u=5\| \mathbf { u } \| = 5 , v=4\| \mathbf { v } \| = 4 ,and θ=π4\theta = \frac { \pi } { 4 } where θ is the angle between u and v.Round answer to two decimal places.

(Multiple Choice)
4.8/5
(40)

A 475-pound trailer is sitting on an exit ramp inclined at 32° on Highway 35.How much force is required to keep the trailer from rolling back down the exit ramp? Round your answer to two decimal places.

(Multiple Choice)
4.7/5
(33)

The vector u=3800,5400\mathbf { u } = \langle 3800,5400 \rangle gives the number of units of two models of laptops produced by a company.The vector v=1350,1000\mathbf { v } = \langle 1350,1000 \rangle gives the prices (in dollars)of the two models of laptops,respectively.Identify the vector operation used to increase revenue by 3.5%.

(Multiple Choice)
4.9/5
(34)

Use the dot product to find the magnitude of u.​ u=24i28j\mathbf { u } = 24 \mathbf { i } - 28 \mathbf { j }

(Multiple Choice)
4.8/5
(37)

Given vectors u=1,2\mathbf { u } = \langle - 1 , - 2 \rangle and v=3,5\mathbf { v } = \langle 3,5 \rangle determine the quantity indicated below. (4u2v)u( 4 \mathbf { u } \cdot 2 \mathbf { v } ) \mathbf { u }

(Multiple Choice)
4.9/5
(35)

Find the projection of u onto v if u=5,3\mathbf { u } = \langle 5 , - 3 \rangle , v=1,4\mathbf { v } = \langle - 1,4 \rangle . ​

(Multiple Choice)
5.0/5
(37)

A force of y=50y = 50 pounds exerted at an angle of 3030 ^ { \circ } above the horizontal is required to slide a table across a floor (see figure).The table is dragged x=12x = 12 feet.Determine the work done in sliding the table.​  A force of  y = 50  pounds exerted at an angle of  30 ^ { \circ }  above the horizontal is required to slide a table across a floor (see figure).The table is dragged  x = 12  feet.Determine the work done in sliding the table.​   ​

(Multiple Choice)
4.8/5
(36)

Determine whether u are v and orthogonal,parallel,or neither. u=1,5,v=10,3\mathbf { u } = \langle - 1,5 \rangle , \mathbf { v } = \langle - 10 , - 3 \rangle

(Multiple Choice)
4.8/5
(38)

Find the projection of u onto v if , u=4,2\mathbf { u } = \langle 4,2 \rangle , v=5,2\mathbf { v } = \langle 5 , - 2 \rangle . ​

(Multiple Choice)
4.9/5
(40)

Use the dot product to find the magnitude of u if u=6,2\mathbf { u } = \langle 6 , - 2 \rangle

(Multiple Choice)
4.7/5
(32)

Find the angle between the vectors u and v if u=3,3\mathbf { u } = \langle 3 , - 3 \rangle ,and v=1,1\mathbf { v } = \langle 1 , - 1 \rangle Round your answer to two decimal places.

(Multiple Choice)
4.8/5
(46)

Use the vectors u=2,2\mathbf { u } = \langle 2,2 \rangle , v=2,2\mathbf { v } = \langle - 2,2 \rangle to find the indicated quantity.State whether the result is a vector or a scalar.​ 3uv3 \mathbf { u } \cdot \mathbf { v }

(Multiple Choice)
4.8/5
(26)
Showing 41 - 60 of 67
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)