Exam 7: Techniques of Integration

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Use Simpson's Rule to approximate the integral with answers rounded to four decimal places. 0π/22+sin2xdx;n=6\int_{0}^{\pi / 2} \sqrt{2+\sin ^{2} x} d x ; \quad n=6

(Multiple Choice)
4.8/5
(35)

For what values of K is the following integral improper? 0x5xx219x+90dx\int_{0}^{x} \frac{5 x}{x^{2}-19 x+90} d x

(Short Answer)
4.7/5
(35)

Evaluate the integral using an appropriate trigonometric substitution. 121(2+x2)3/2dx\int_{1}^{\sqrt{2}} \frac{1}{\left(2+x^{2}\right)^{3 / 2}} d x

(Short Answer)
4.8/5
(40)

Evaluate the integral using the indicated trigonometric substitution. dxx2x236;x=6secθ\int \frac{d x}{x^{2} \sqrt{x^{2}-36}} ; x=6 \sec \theta

(Short Answer)
4.9/5
(41)

Evaluate the integral. 013x03dx\int_{0}^{1} \frac{3}{x^{03}} d x

(Short Answer)
4.9/5
(33)

Find the integral. cos5xsin2xdx\int \cos ^{5} x \sin ^{2} x d x

(Multiple Choice)
5.0/5
(40)

Find the integral. x5lnxdx\int x^{5} \ln x d x

(Multiple Choice)
4.8/5
(39)

Evaluate the integral using integration by parts with the indicated choices of u and dv. 6θcosθdθ,u=6θ,dv=cosθdθ\int 6 \theta \cos \theta d \theta, u=6 \theta, d v=\cos \theta d \theta

(Multiple Choice)
4.9/5
(40)

Evaluate the integral. x/6π/33ln(tanx)7sinxcosxdx\int_{x / 6}^{\pi / 3} \frac{3 \ln (\tan x)}{7 \sin x \cos x} d x

(Multiple Choice)
4.9/5
(27)

Evaluate the integral to six decimal places. 01x325x2dx\int_{0}^{1} \frac{x^{3}}{\sqrt{25-x^{2}}} d x

(Short Answer)
4.8/5
(35)

Let a and b be real numbers. What integral must appear in place of the question mark "?" to make the following statement true? a10x2+9dx+a10x2+9dx=?+b10x2+9dx\int_{-\infty}^{a} \frac{10}{x^{2}+9} d x+\int_{a}^{\infty} \frac{10}{x^{2}+9} d x=?+\int_{b}^{\infty} \frac{10}{x^{2}+9} d x

(Multiple Choice)
4.8/5
(41)

Evaluate the integral. 01xx+8dx\int_{0}^{1} \frac{x}{x+8} d x

(Multiple Choice)
5.0/5
(34)

Find the integral. sin3xcos6xdx\int \sin ^{3} x \cos ^{6} x d x

(Multiple Choice)
4.9/5
(35)

Eight milligrams of a dye are injected into a vein leading the an individual's heart. The concentration of dye in the aorta (in milligrams per liter) measured at 2-sec intervals is shown in the accompanying table. Use Simpson's Rule with n=12n=12 and the formula R=60D024C(t)dtR=\frac{60 D}{\int_{0}^{24} C(t) d t} to estimate the person's cardiac output, where D is the quantity of dye injected in milligrams, C(t)\boldsymbol{C}(\boldsymbol{t}) is the concentration of the dye in the aorta, and R is measured in liters per minute. Round your answer to one decimal place. 0 2 4 6 8 10 12 14 16 18 20 22 24 ( ) 0 0 2.6 5.9 9.7 7.9 4.6 3.5 2.2 0.8 0.2 0.1 0

(Short Answer)
4.8/5
(39)

Use the Table of Integrals to evaluate the integral. 49x21x2dx\int \frac{\sqrt{49 x^{2}-1}}{x^{2}} d x

(Multiple Choice)
4.9/5
(40)

A water storage tank has the shape of a cylinder with diameter 10 ft. It is mounted so that the circular cross-sections are vertical. If the depth of the water is 9 ft, what percentage of the total capacity is being used? Round the answer to the nearest tenth.

(Short Answer)
4.8/5
(33)

Evaluate the integral. 7dx(x2+2x+2)2\int \frac{7 d x}{\left(x^{2}+2 x+2\right)^{2}}

(Multiple Choice)
4.9/5
(36)

Use the Trapezoidal Rule to approximate the integral with answers rounded to four decimal places. 01dx2x+4;n=7\int_{0}^{1} \frac{d x}{2 x+4} ; \quad n=7

(Multiple Choice)
5.0/5
(49)

Use a table of integrals to evaluate the integral. x2+2xdx\int x \sqrt{2+2 x} d x

(Multiple Choice)
4.7/5
(40)

Determine whether the improper integral converges or diverges, and if it converges, find its value. 3πcosxdx\int_{3 \pi}^{\infty} \cos x d x

(Multiple Choice)
5.0/5
(34)
Showing 81 - 100 of 124
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)