Exam 15: Multiple Integrals

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Use spherical coordinates to find the volume of the solid that lies within the sphere x2+y2+z2=16x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 16 above the xy-plane and below the cone z=x2+y2z = \sqrt { x ^ { 2 } + y ^ { 2 } } . Round the answer to two decimal places.

Free
(Short Answer)
4.8/5
(37)
Correct Answer:
Verified

39.26

Find the region E for which the triple integral E(15x25y25z2)dV\iiint _ { E } \left( 1 - 5 x ^ { 2 } - 5 y ^ { 2 } - 5 z ^ { 2 } \right) d V is a maximum.

Free
(Short Answer)
4.7/5
(38)
Correct Answer:
Verified

5x2+5y2+5z2=15 x ^ { 2 } + 5 y ^ { 2 } + 5 z ^ { 2 } = 1

Find the volume bounded by the cylinders x2+y2=9x ^ { 2 } + y ^ { 2 } = 9 and y2+z2=9y ^ { 2 } + z ^ { 2 } = 9 .

Free
(Short Answer)
4.8/5
(31)
Correct Answer:
Verified

144144

Find the center of mass of a homogeneous solid bounded by the paraboloid z=100x2y2z = 100 - x ^ { 2 } - y ^ { 2 } and z=0z = 0

(Short Answer)
4.9/5
(45)

Identify the surface with equation ϕ=π8\phi = \frac { \pi } { 8 }

(Short Answer)
5.0/5
(38)

The joint density function for a pair of random variables XX and YY is given. f(x,y)={Cx(1+y),0x2,0y20, otherwise f ( x , y ) = \left\{ \begin{array} { l l } C x ( 1 + y ) , & 0 \leq x \leq 2,0 \leq y \leq 2 \\0 , & \text { otherwise }\end{array} \right. Find the value of the constant CC .

(Short Answer)
4.9/5
(29)

Use polar coordinates to evaluate. 44016x2sin(x2+y2)dxdy\int _ { - 4 } ^ { 4 } \int _ { 0 } ^ { \sqrt { 16 - x ^ { 2 } } } \sin \left( x ^ { 2 } + y ^ { 2 } \right) d x d y

(Short Answer)
4.9/5
(31)

Find the area of the part of the plane 3x+3y+z=33 x + 3 y + z = 3 that lies in the first octant.

(Short Answer)
4.7/5
(38)

Find an approximation for the integral. R(4x5y2)dA\iint _ { R } \left( 4 x - 5 y ^ { 2 } \right) d A Use a double Riemann sum with m=n=2m = n = 2 and the sample point in the upper right corner to approximate the double integral, where R={(x,y)0x8,0y4}R = \{ ( x , y ) \mid 0 \leq x \leq 8,0 \leq y \leq 4 \} .

(Short Answer)
4.7/5
(32)

Use the Midpoint Rule for double integrals with m=n=2m = n = 2 to estimate the area of the surface. Round your answer to three decimal places. z=xy+x2+y2,0x5,0y5z = x y + x ^ { 2 } + y ^ { 2 } , 0 \leq x \leq 5,0 \leq y \leq 5

(Short Answer)
4.9/5
(38)

Find the center of mass of a lamina in the shape of an isosceles right triangle with equal sides of length a=15a = 15 if the density at any point is proportional to the square of the distance from the vertex opposite the hypotenuse. Assume the vertex opposite the hypotenuse is located at (0,0)( 0,0 ) , and that the sides are along the positive axes.

(Multiple Choice)
4.9/5
(30)

Find the mass and the moments of inertia IxI _ { x } Iy,I _ { y } , and I0I _ { 0 } and the radii of gyration xˉˉ\bar {\bar { x }} and yˉˉ\bar {\bar { y } } for the lamina occupying the region R, where R is the rectangular region with vertices (0,0)( 0,0 ) \text {, } (5,0)( 5,0 ) (5,4)( 5,4 ) and (0,4)( 0,4 ) , and having uniform density ρ(x,y)=9\rho ( x , y ) = 9

(Short Answer)
4.9/5
(34)

Determine whether to use polar coordinates or rectangular coordinates to evaluate the integral Rf(x,y)dA\iint _ { R } f ( x , y ) d A , where f is a continuous function. Then write an expression for the (iterated) integral.  Determine whether to use polar coordinates or rectangular coordinates to evaluate the integral  \iint _ { R } f ( x , y ) d A  , where f is a continuous function. Then write an expression for the (iterated) integral.

(Short Answer)
4.9/5
(26)

Use polar coordinates to find the volume of the solid under the paraboloid z=x2+y2z = x ^ { 2 } + y ^ { 2 } and above the disk x2+y29x ^ { 2 } + y ^ { 2 } \leq 9 .

(Multiple Choice)
5.0/5
(32)

Describe the region whose area is given by the integral. 0π/40cos2θ2rdrdθ\int _ { 0 } ^ { \pi / 4 } \int _ { 0 } ^ { \cos 2 \theta } 2 r d r d \theta

(Short Answer)
4.8/5
(35)

Evaluate the integral by changing to polar coordinates. Dex2y2dA\iint _ { D } e ^ { - x ^ { 2 } - y ^ { 2 } } d A DD is the region bounded by the semicircle x=9y2x = \sqrt { 9 - y ^ { 2 } } and the yy -axis.

(Short Answer)
4.8/5
(29)

Find the mass and the center of mass of the lamina occupying the region R, where R is the region bounded by the graphs of y=sin3xy = \sin 3 x y=0y = 0 x=0x = 0 and x=π3x = \frac { \pi } { 3 } and having the mass density ρ(x,y)=4y\rho ( x , y ) = 4 y

(Short Answer)
4.9/5
(32)

Find 05f(x,y)dx\int _ { 0 } ^ { 5 } f ( x , y ) d x , if f(x,y)=2x+3x2yf ( x , y ) = 2 x + 3 x ^ { 2 } y .

(Short Answer)
4.9/5
(39)

Find the mass of the lamina that occupies the region DD and has the given density function. Round your answer to two decimal places. R={(x,y)1x3,1y4}ρ(x,y)=5y2R = \{ ( x , y ) \mid 1 \leq x \leq 3,1 \leq y \leq 4 \} \rho ( x , y ) = 5 y ^ { 2 }

(Short Answer)
4.9/5
(44)

Calculate the double integral. Round your answer to two decimal places. R4+x21+y2dA,R={(x,y)0x6,0y4}\iint _ { R } \frac { 4 + x ^ { 2 } } { 1 + y ^ { 2 } } d A , R = \{ ( x , y ) \mid 0 \leq x \leq 6,0 \leq y \leq 4 \}

(Short Answer)
4.7/5
(42)
Showing 1 - 20 of 124
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)