Exam 16: Vector Calculus

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Use Stoke's theorem to calculate the surface integral SFdS,\iint _ { S } \mathbf { F } \cdot d \mathbf { S } , where F(x,y,z)=(exsiny)i+(excosyz)j+yk\mathbf { F } ( x , y , z ) = \left( e ^ { x } \sin y \right) \mathbf { i } + \left( e ^ { x } \cos y - z \right) \mathbf { j } + y \mathbf { k } and S is the part of the cone z2=x2+y2+3 for which 1z2z ^ { 2 } = x ^ { 2 } + y ^ { 2 } + 3 \text { for which } 1 \leq z \leq 2

Free
(Short Answer)
4.8/5
(29)
Correct Answer:
Verified

0

Find parametric equations for C, if C is the curve of intersection of the hyperbolic paraboloid z=y2x2z = y ^ { 2 } - x ^ { 2 } and the cylinder x2+y2=4x ^ { 2 } + y ^ { 2 } = 4 oriented counterclockwise as viewed from above.

Free
(Short Answer)
4.9/5
(30)
Correct Answer:
Verified

x=2cos(t),y=2sin(t),z=4cos(2t)x = 2 \cos ( t ) , y = 2 \sin ( t ) , z = - 4 \cos ( 2 t )

Determine whether or not F is a conservative vector field. If it is, find a function f such that F=f.\mathbf { F } = \nabla f . F=(6xcosyycosx)i+(3x2sinysinx)j\mathbf { F } = ( 6 x \cos y - y \cos x ) \mathbf { i } + \left( - 3 x ^ { 2 } \sin y - \sin x \right) \mathbf { j }

Free
(Short Answer)
4.9/5
(46)
Correct Answer:
Verified

3x2cos(y)ysin(x)+K3 x ^ { 2 } \cos ( y ) - y \sin ( x ) + K

Evaluate the line integral \cdotd, where F(x,y)=(xy)i+(xy)j\mathbf { F } ( x , y ) = ( x - y ) \mathbf { i } + ( x y ) \mathbf { j } and C is the arc of the circle x2+y2=25x ^ { 2 } + y ^ { 2 } = 25 traversed counterclockwise from ( 55 , 0) to (0, - 55 ). Round your answer to two decimal places.

(Multiple Choice)
4.9/5
(36)

Find the area of the surface S where S is the part of the sphere x2+y2+z2=16x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 16 that lies to the right of the xz-plane and inside the cylinder x2+z2=9x ^ { 2 } + z ^ { 2 } = 9

(Short Answer)
4.9/5
(34)

Let S be the cube with vertices (±1,±1,±1)( \pm 1 , \pm 1 , \pm 1 ) . Approximate Sx2+2y2+7z2\iint _ { S } \sqrt { x ^ { 2 } + 2 y ^ { 2 } + 7 z ^ { 2 } } by using a Riemann sum as in Definition 1, taking the patches SijS _ { i j } to be the squares that are the faces of the cube and the points PijP _ { i j } to be the centers of the squares.

(Multiple Choice)
4.8/5
(31)

Find a parametric representation for the part of the plane z=2z = 2 that lies inside the cylinder x2+y2=9x ^ { 2 } + y ^ { 2 } = 9

(Short Answer)
4.8/5
(39)

Find the area of the part of the cone z=x2+y2z = \sqrt { x ^ { 2 } + y ^ { 2 } } that is cut off by the cylinder (x3)2+y2=4( x - 3 ) ^ { 2 } + y ^ { 2 } = 4

(Multiple Choice)
4.8/5
(39)

Let f be a scalar field. Determine whether the expression is meaningful. If so, state whether the expression represents a scalar field or a vector field. curl f

(Short Answer)
4.9/5
(36)

Evaluate the line integral over the given curve C. C4xyds\int _ { C } 4 x y d s , where C is the line segment joining (-2, -1) to (4, 5)

(Short Answer)
5.0/5
(35)

Use the Divergence Theorem to calculate the surface integral 5FdS\iint _ { 5 } \mathbf { F } \cdot d \mathbf { S } ; that is, calculate the flux of FF across SS . F(x,y,z)=xyexi+xy2z3jyexk\mathbf { F } ( x , y , z ) = x y e ^ { x } \mathbf { i } + x y ^ { 2 } z ^ { 3 } \mathbf { j } - y e ^ { x } \mathbf { k } S is the surface of the box bounded by the coordinate planes and the planes x=4,y=2 and z=1x = 4 , y = 2 \text { and } z = 1 .

(Multiple Choice)
4.8/5
(36)

Show that F is conservative, and find a function f such that F=f\mathbf { F } = \nabla f , and use the result to evaluate CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } , where C is any curve from A(x0,y0,z0)A \left( x _ { 0 } , y _ { 0 } , z _ { 0 } \right) to B(x1,y1,z1)B \left( x _ { 1 } , y _ { 1 } , z _ { 1 } \right) . F(x,y,z)=12x2yi+(4x3+10yz2)j+10y2zk\mathbf { F } ( x , y , z ) = 12 x ^ { 2 } y \mathbf { i } + \left( 4 x ^ { 3 } + 10 y z ^ { 2 } \right) \mathbf { j } + 10 y ^ { 2 } z \mathbf { k } ; A(0,0,0)A ( 0,0,0 ) and B(0,3,1)B ( 0,3,1 )

(Multiple Choice)
4.8/5
(45)

Find the divergence of the vector field. F(x,y,z)=x4x2+7y2+3z2i+y4x2+7y2+3z2j+z4x2+7y2+3z2k\mathbf { F } ( x , y , z ) = \frac { x } { 4 x ^ { 2 } + 7 y ^ { 2 } + 3 z ^ { 2 } } \mathbf { i } + \frac { y } { 4 x ^ { 2 } + 7 y ^ { 2 } + 3 z ^ { 2 } } \mathbf { j } + \frac { z } { 4 x ^ { 2 } + 7 y ^ { 2 } + 3 z ^ { 2 } } \mathbf { k }

(Short Answer)
4.9/5
(41)

Find the exact value of CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } where F(x,y)=ex1i+xyj\mathbf { F } ( x , y ) = e ^ { x - 1 } \mathbf { i } + x y \mathbf { j } and C is given by r(t)=2t2i+7t3j,0t1\mathbf { r } ( t ) = 2 t ^ { 2 } \mathbf { i } + 7 t ^ { 3 } \mathbf { j } , 0 \leq t \leq 1

(Short Answer)
4.8/5
(35)

Match the vector field with one of the plots shown below. F(x,y,z)=j+k\mathbf { F } ( x , y , z ) = \mathbf { j } + \mathbf { k }

(Multiple Choice)
4.8/5
(43)

Find the area of the surface. The part of the plane r(u,v)=(5u+3v+4)i+(2u+3v+4)j+(4u+2v+8)k\mathbf { r } ( u , v ) = ( 5 u + 3 v + 4 ) \mathbf { i } + ( 2 u + 3 v + 4 ) \mathbf { j } + ( 4 u + 2 v + 8 ) \mathbf { k } ; 0u10 \leq u \leq 1 , 0v50 \leq v \leq 5

(Multiple Choice)
4.8/5
(28)

Let r=xi+yj+zk and r=r\mathbf { r } = x \mathbf { i } + y \mathbf { j } + z \mathbf { k } \text { and } r = | \mathbf { r } | \text {. }  Find (9r)\text { Find } \nabla \cdot ( 9 \mathbf { r } )

(Multiple Choice)
4.7/5
(37)

Assuming that S satisfies the conditions of the Divergence Theorem and the scalar functions and components of the vector fields have continuous second order partial derivatives, find 53andS\iint _ { 5 } 3 \mathbf { a } \mathbf { n } d S , where a is the constant vector.

(Multiple Choice)
4.8/5
(29)

Evaluate the line integral over the given curve C. C4xyds\int _ { C } 4 x y d s , where C is the line segment joining (-4, -5) to (5, 4)

(Short Answer)
4.7/5
(40)

Use Green's Theorem to find the work done by the force F(x,y)=(6x7y2)i+3yj\mathbf { F } ( x , y ) = \left( 6 x - 7 y ^ { 2 } \right) \mathbf { i } + 3 y \mathbf { j } in moving a particle in the positive direction once around the triangle with vertices (0,0)( 0,0 ) , (1,0)( 1,0 ) , and (0,1)( 0,1 ) .

(Multiple Choice)
5.0/5
(31)
Showing 1 - 20 of 137
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)