Exam 34: Electromagnetic Fields and Waves

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

A sinusoidal electromagnetic wave in vacuum delivers energy at an average rate of 5.00 µW/m2. What are the amplitudes of the electric and magnetic fields of this wave? (c = 3.0 x 108 m/s, μ0 = 4π × 10-7 T ∙ m/A, ε0 = 8.85 × 10-12 C2/N ∙ m2)

(Short Answer)
4.9/5
(44)

A laser beam has a wavelength of 633 nm and a power of 0.500 mW spread uniformly over a circle 1.20 mm in diameter. This beam falls perpendicularly on a perfectly reflecting piece of paper having twice the diameter of the laser beam and a mass of 1.50 mg. (c = 3.00 × 108 m/s, μ0 = 4π × 10-7 T ∙ m/A, ε0 = 8.85 × 10-12 C2/N ∙ m2) (a) What are the amplitudes of the electric and magnetic fields in this laser beam? (b) What acceleration does the laser beam give to the paper?

(Essay)
4.9/5
(41)

A microwave oven operates with sinusoidal microwaves at a frequency of 2400 MHz. The height of the oven cavity is 25 cm and the base measures 30 cm by 30 cm. Assume that microwave energy is generated uniformly on the upper surface of the cavity and propagates directly downward toward the base. The base is lined with a material that completely absorbs microwave energy. The total microwave energy content of the cavity is 0.50 µJ. What is the amplitude of the electric field? (c = 3.00 × 108 m/s, μ0 = 4π × 10-7 T ∙ m/A, ε0 = 8.85 × 10-12 C2/N ∙ m2)

(Multiple Choice)
4.9/5
(40)

A very small source of light that radiates uniformly in all directions produces an electric field amplitude of 2.96 V/m at a point 33.0 m from the source. What is the power output from the source? (c = 3.00 × 108 m/s, μ0 = 4π × 10-7 T ∙ m/A, ε0 = 8.85 × 10-12 C2/N ∙ m2)

(Short Answer)
4.9/5
(48)

A radiometer has two square vanes (1.0 cm by 1.0 cm), attached to a light horizontal cross arm, and pivoted about a vertical axis through the center, as shown in the figure. The center of each vane is 6.0 cm from the axis. One vane is silvered and it reflects all radiant energy incident upon it. The other vane is blackened and it absorbs all incident radiant energy. An electromagnetic wave with an intensity of 0.30 kW/m2 is incident normally upon the vanes. What is the radiation pressure on the blackened vane? (c = 3.00 × 108 m/s, μ0 = 4π × 10-7 T ∙ m/A, ε0 = 8.85 × 10-12 C2/N ∙ m2) A radiometer has two square vanes (1.0 cm by 1.0 cm), attached to a light horizontal cross arm, and pivoted about a vertical axis through the center, as shown in the figure. The center of each vane is 6.0 cm from the axis. One vane is silvered and it reflects all radiant energy incident upon it. The other vane is blackened and it absorbs all incident radiant energy. An electromagnetic wave with an intensity of 0.30 kW/m<sup>2</sup> is incident normally upon the vanes. What is the radiation pressure on the blackened vane? (c = 3.00 × 10<sup>8</sup> m/s, μ<sub>0</sub> = 4π × 10<sup>-7</sup> T ∙ m/A, ε<sub>0</sub> = 8.85 × 10<sup>-</sup><sup>12</sup> C<sup>2</sup>/N ∙ m<sup>2</sup>)

(Multiple Choice)
4.9/5
(33)

In an electromagnetic wave, the electric and magnetic fields are oriented such that they are

(Multiple Choice)
4.7/5
(33)

Given that the wavelengths of visible light range from 400 nm to 700 nm, what is the highest frequency of visible light? (c = 3.0 x 108 m/s)

(Multiple Choice)
4.7/5
(39)

The intensity of solar radiation near the earth is 1.4 kW/m2. What force is exerted by solar radiation impinging normally on a 5.0 m2 perfectly reflecting panel of an artificial satellite orbiting the earth? (c = 3.00 × 108 m/s, μ0 = 4π × 10-7 T ∙ m/A, ε0 = 8.85 × 10-12 C2/N ∙ m2)

(Multiple Choice)
4.8/5
(27)

An 800-kHz radio signal is detected at a point 2.7 km distant from a transmitter tower. The electric field amplitude of the signal at that point is 0.36 V/m. Assume that the signal power is radiated uniformly in all directions and that radio waves incident upon the ground are completely absorbed. What is the intensity of the radio signal at that point? (c = 3.00 × 108 m/s, μ0 = 4π × 10-7 T ∙ m/A, ε0 = 8.85 × 10-12 C2/N ∙ m2)

(Multiple Choice)
5.0/5
(34)

The y component of the electric field of an electromagnetic wave traveling in the +x direction through vacuum obeys the equation Ey = (375 N/C) cos[kx - (2.20 × 1014 rad/s)t]. What is the wavelength of this electromagnetic wave? (c = 3.0 x 108 m/s)

(Multiple Choice)
4.8/5
(45)

28) A sinusoidal electromagnetic wave is propagating in vacuum. At a given point P and at a particular time, the electric field is in the +x direction and the magnetic field is in the -y direction. (a) What is the direction of propagation of the wave? (b) If the intensity of the wave at point P is 0.36 W/m2, what is the electric field amplitude at that point? (c = 3.00 × 108 m/s, μ0 = 4π × 10-7 T ∙ m/A, ε0 = 8.85 × 10-12 C2/N ∙ m2)

(Essay)
4.9/5
(39)

When an electromagnetic wave falls on a white, perfectly reflecting surface, it exerts a force F on that surface. If the surface is now painted a perfectly absorbing black, what will be the force that the same wave will exert on the surface?

(Multiple Choice)
4.8/5
(26)

Light of intensity I0 and polarized horizontally passes through three polarizes. The first and third polarizing axes are horizontal, but the second one is oriented 20.0° to the horizontal. In terms of I0, what is the intensity of the light that passes through the set of polarizers?

(Multiple Choice)
4.9/5
(33)

An electromagnetic wave propagates along the +y direction as shown in the figure. If the electric field at the origin is along the +z direction, what is the direction of the magnetic field? An electromagnetic wave propagates along the +y direction as shown in the figure. If the electric field at the origin is along the +z direction, what is the direction of the magnetic field?

(Multiple Choice)
4.8/5
(32)

The energy per unit volume in an electromagnetic wave is

(Multiple Choice)
5.0/5
(33)

An electromagnetic wave has a peak electric field of 3.0 kV/m. What is the intensity of the wave? (c = 3.0 x 108 m/s, μ0 = 4π × 10-7 T ∙ m/A, ε0 = 8.85 × 10-12 C2/N ∙ m2)

(Multiple Choice)
4.9/5
(32)

The magnetic field of an electromagnetic wave has a peak value of 5.0 × 10-10 T. What is the intensity of the wave? (c = 3.0 x 108 m/s, c = 3.00 × 108 m/s, μ0 = 4π × 10-7 T ∙ m/A, ε0 = 8.85 × 10-12 C2/N ∙ m2)

(Multiple Choice)
4.8/5
(33)

The magnitude of the Poynting vector of a planar electromagnetic wave has an average value of 0.724 W/m2. What is the maximum value of the magnetic field in the wave? (c = 3.0 x 108 m/s, μ0 = 4π × 10-7 T ∙ m/A, ε0 = 8.85 × 10-12 C2/N ∙ m2)

(Multiple Choice)
4.7/5
(36)

A laser with a power of 1.0 mW has a beam radius of 1.0 mm. What is the peak value of the electric field in that beam? (c = 3.0 x 108 m/s, μ0 = 4π × 10-7 T ∙ m/A, ε0 = 8.85 × 10-12 C2/N ∙ m2)

(Multiple Choice)
5.0/5
(33)

A capacitor is hooked up to a resistor and an AC voltage source as shown in the figure. The output of the source is given by V(t) = V0 sin ωt. The plates of the capacitor are disks of radius R. Point P is directly between the two plates, equidistant from them and a distance R/2 from the center axis. At point P A capacitor is hooked up to a resistor and an AC voltage source as shown in the figure. The output of the source is given by V(t) = V<sub>0</sub> sin ωt. The plates of the capacitor are disks of radius R. Point P is directly between the two plates, equidistant from them and a distance R/2 from the center axis. At point P

(Multiple Choice)
4.8/5
(37)
Showing 21 - 40 of 52
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)