Exam 1: Linear Equations in Linear Algebra

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Solve the problem. -Let A=[231875]\mathrm { A } = \left[ \begin{array} { r r r } 2 & 3 & 1 \\ 8 & - 7 & 5 \end{array} \right] and u=[372]\mathbf { u } = \left[ \begin{array} { l } 3 \\ 7 \\ 2 \end{array} \right] . Define a transformation T:R3>R2\mathrm { T } : \mathcal { R } ^ { 3 } \rightarrow > \mathcal { R } ^ { 2 } by T(x)=Ax\mathrm { T } ( \mathbf { x } ) = \mathrm { Ax } . Find T(u)\mathrm { T } ( \mathbf { u } ) , the image of u\mathbf { u } under the transformation T\mathrm { T } .

(Multiple Choice)
4.9/5
(40)

Determine whether the system is consistent. - ++=7 -+2=7 5++=11

(Multiple Choice)
4.8/5
(32)

Compute the product or state that it is undefined. - [727][303]\left[ \begin{array} { l l l } - 7 & 2 & 7\end{array} \right] \left[ \begin{array} { r } 3 \\0 \\- 3\end{array} \right]

(Multiple Choice)
4.8/5
(31)

Solve the system of equations. - +3+2 =11 4+9 =-12 =-4

(Multiple Choice)
4.7/5
(39)

Display the indicated vector(s) on an xy-graph. -  Let u=[35] and v=[22]. Display the vectors u,v, and u+v on the same axes. \text { Let } \mathbf { u } = \left[ \begin{array} { r } - 3 \\5\end{array} \right] \text { and } \mathbf { v } = \left[ \begin{array} { r } - 2 \\2\end{array} \right] \text {. Display the vectors } \mathbf { u } , \mathbf { v } , \text { and } \mathbf { u } + \mathbf { v } \text { on the same axes. }  Display the indicated vector(s) on an xy-graph. - \text { Let } \mathbf { u } = \left[ \begin{array} { r }  - 3 \\ 5 \end{array} \right] \text { and } \mathbf { v } = \left[ \begin{array} { r }  - 2 \\ 2 \end{array} \right] \text {. Display the vectors } \mathbf { u } , \mathbf { v } , \text { and } \mathbf { u } + \mathbf { v } \text { on the same axes. }

(Multiple Choice)
4.9/5
(36)

Solve the problem. -The network in the figure shows the traffic flow (in vehicles per hour)over several one-way streets in the downtown area of a certain city during a typical lunch time. Determine the general flow Pattern for the network. In other words, find the general solution of the system of equations that describes the flow. In your General solution let x4 be free. Solve the problem. -The network in the figure shows the traffic flow (in vehicles per hour)over several one-way streets in the downtown area of a certain city during a typical lunch time. Determine the general flow Pattern for the network. In other words, find the general solution of the system of equations that describes the flow. In your General solution let x4 be free.

(Multiple Choice)
4.9/5
(39)

Determine whether the system is consistent. - +3+2=11 4+9=-12 +7+11=-11

(Multiple Choice)
4.7/5
(30)

Determine whether the system is consistent. - 5+2+=-11 2-3-=17 7-=12

(Multiple Choice)
4.9/5
(45)

Solve the problem. -Describe all solutions of Ax = b, where A=[253265470]A = \left[ \begin{array} { r r r } 2 & - 5 & 3 \\ - 2 & 6 & - 5 \\ - 4 & 7 & 0 \end{array} \right] and b=[343]\mathbf { b } = \left[ \begin{array} { r } - 3 \\ 4 \\ 3 \end{array} \right] Describe the general solution in parametric vector form.

(Multiple Choice)
4.8/5
(30)

Find the indicated vector. -Let u=[97],v=[34]\mathbf { u } = \left[ \begin{array} { r } - 9 \\ 7 \end{array} \right] , \mathbf { v } = \left[ \begin{array} { r } - 3 \\ 4 \end{array} \right] . Find u+v\mathbf { u } + \mathbf { v } .

(Multiple Choice)
4.9/5
(25)

The augmented matrix is given for a system of equations. If the system is consistent, find the general solution. Otherwise state that there is no solution. - [106301230000]\left[ \begin{array} { r r r r } 1 & 0 & 6 & 3 \\0 & 1 & - 2 & - 3 \\0 & 0 & 0 & 0\end{array} \right]

(Multiple Choice)
4.8/5
(29)

Determine whether the matrix is in echelon form, reduced echelon form, or neither. - [100721020512]\left[ \begin{array} { r r r r } 1 & 0 & 0 & - 7 \\2 & 1 & 0 & - 2 \\0 & 5 & 1 & 2\end{array} \right]

(Multiple Choice)
4.8/5
(37)

Determine whether the matrix is in echelon form, reduced echelon form, or neither. - [125701490012]\left[ \begin{array} { r r r r } 1 & 2 & 5 & - 7 \\0 & 1 & - 4 & 9 \\0 & 0 & 1 & 2\end{array} \right]

(Multiple Choice)
4.9/5
(40)

Determine whether the matrix is in echelon form, reduced echelon form, or neither. - [145761480516]\left[ \begin{array} { r r r r } 1 & 4 & 5 & - 7 \\6 & 1 & - 4 & 8 \\0 & 5 & 1 & 6\end{array} \right]

(Multiple Choice)
4.9/5
(32)

Find the indicated vector. -Let u=[71]\mathbf { u } = \left[ \begin{array} { r } 7 \\ - 1 \end{array} \right] . Find 6u- 6 \mathbf { u } .

(Multiple Choice)
4.9/5
(38)

Solve the problem. -For what values of h are the given vectors linearly independent? [565],[2024h]\left[ \begin{array} { c } - 5 \\- 6 \\5\end{array} \right] , \left[ \begin{array} { c } 20 \\24 \\h\end{array} \right]

(Multiple Choice)
4.8/5
(37)

Describe geometrically the effect of the transformation T. -Let A=[000010001]A = \left[ \begin{array} { l l l } 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right] Define a transformation T\mathrm { T } by T(x)=Ax\mathrm { T } ( \mathbf { x } ) = \mathrm { Ax } .

(Multiple Choice)
4.8/5
(37)

Solve the system of equations. - ++=7 -+2=7 5++=11

(Multiple Choice)
4.7/5
(29)

Solve the problem. -A company manufactures two products. For $1.00 worth of product A, the company spends $0.40 on materials, $0.25 on labor, and $0.10 on overhead. For $1.00 worth of product B, the company spends $0.50 on materials, $0.20 on labor, and $0.10 on overhead. Let a=[0.400.250.10] and b=[0.500.200.10]\mathbf { a } = \left[ \begin{array} { l } 0.40 \\0.25 \\0.10\end{array} \right] \text { and } \mathbf { b } = \left[ \begin{array} { l } 0.50 \\0.20 \\0.10\end{array} \right] Then a and b represent the ʺcosts per dollar of incomeʺ for the two products. Evaluate 100a + 400b and give an economic interpretation of the result.

(Essay)
4.9/5
(36)

Determine whether the system is consistent. - 4-+3 =12 2+9 =-5 +4+6 =-32

(Multiple Choice)
4.8/5
(38)
Showing 41 - 60 of 79
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)