Exam 1: Linear Equations in Linear Algebra

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the indicated vector. -Let u=[61]\mathbf { u } = \left[ \begin{array} { l } 6 \\ 1 \end{array} \right] . Find 5u5 \mathbf { u } .

(Multiple Choice)
4.7/5
(31)

Compute the product or state that it is undefined. - [226585][833]\left[ \begin{array} { r r r } - 2 & - 2 & 6 \\5 & 8 & - 5\end{array} \right] \left[ \begin{array} { r } 8 \\- 3 \\3\end{array} \right]

(Multiple Choice)
4.8/5
(37)

Display the indicated vector(s) on an xy-graph. -  Let u=[54] Display the vector 2u using the given axes. \text { Let } \mathbf { u } = \left[ \begin{array} { r } 5 \\- 4\end{array} \right] \text { Display the vector } 2 \mathbf { u } \text { using the given axes. }  Display the indicated vector(s) on an xy-graph. - \text { Let } \mathbf { u } = \left[ \begin{array} { r }  5 \\ - 4 \end{array} \right] \text { Display the vector } 2 \mathbf { u } \text { using the given axes. }

(Multiple Choice)
4.7/5
(30)

Find the standard matrix of the linear transformation T. -T: R2>R2\mathfrak { R } ^ { 2 } \rightarrow > \mathfrak { R } ^ { 2 } rotates points (about the origin) through 74π\frac { 7 } { 4 } \pi radians (with counterclockwise rotation for a positive angle).

(Multiple Choice)
5.0/5
(29)

Solve the system of equations. - 2+=0 -3+=0 3+-=0

(Multiple Choice)
4.8/5
(28)

Describe geometrically the effect of the transformation T. -Let A=[1021]\mathrm { A } = \left[ \begin{array} { l l } 1 & 0 \\ 2 & 1 \end{array} \right] . Define a transformation T\mathrm { T } by T(x)=Ax\mathrm { T } ( \mathrm { x } ) = \mathrm { Ax } .

(Multiple Choice)
4.8/5
(35)

Solve the system of equations. - -+8 =-107 6+ =17 3-5 =89

(Multiple Choice)
5.0/5
(37)

Determine whether the system is consistent. - 5+ =-11 ++6- =15 5++6 =16 ++3 =8

(Multiple Choice)
4.8/5
(29)

Solve the system of equations. - 5+2+=-11 2-3-=17 7++2=-4

(Multiple Choice)
5.0/5
(41)

Compute the product or state that it is undefined. - [533438][248]\left[ \begin{array} { r r } 5 & - 3 \\- 3 & 4 \\- 3 & 8\end{array} \right] \left[ \begin{array} { r } 2 \\- 4 \\8\end{array} \right]

(Multiple Choice)
4.8/5
(31)

Determine whether the system is consistent. - 5+2+=-11 2-3-=17 7++2=-4

(Multiple Choice)
4.8/5
(38)

Solve the problem. -A company manufactures two products. For $1.00 worth of product A, the company spends $0.50 on materials, $0.20 on labor, and $0.15 on overhead. For $1.00 worth of product B, the company spends $0.45 on materials, $0.20 on labor, and $0.15 on overhead. Let a=[0.500.200.15] and b=[0.450.200.15]\mathbf { a } = \left[ \begin{array} { l } 0.50 \\0.20 \\0.15\end{array} \right] \text { and } \mathbf { b } = \left[ \begin{array} { l } 0.45 \\0.20 \\0.15\end{array} \right] a+= 140 60 45 or 0.50 0.20 0.15 + 0.45 0.20 0.15 = 140 60 45 =100,=200

(Essay)
4.8/5
(34)

Use the row reduction algorithm to transform the matrix into echelon form or reduced echelon form as indicated. -Find the echelon form of the given matrix. [1423311952251]\left[ \begin{array} { c c c c } 1 & 4 & - 2 & 3 \\- 3 & - 11 & 9 & - 5 \\2 & 2 & 5 & - 1\end{array} \right]

(Multiple Choice)
4.8/5
(34)

Determine whether the system is consistent. - 2+=0 -3+=0 3+-=0

(Multiple Choice)
4.8/5
(35)

Solve the problem. -Let A=[132251345]A = \left[ \begin{array} { r r r } 1 & - 3 & 2 \\ - 2 & 5 & - 1 \\ 3 & - 4 & 5 \end{array} \right] and b=[b1b2b3]\mathbf { b } = \left[ \begin{array} { l } b _ { 1 } \\ b _ { 2 } \\ b _ { 3 } \end{array} \right] . Determine if the equation Ax=b\mathrm { Ax } = \mathrm { b } is consistent for all possible b1, b2, b3\mathrm { b } _ { 1 } , \mathrm {~b} _ { 2 } , \mathrm {~b} _ { 3 } . If the equation is not consistent for all possible b1,b2,b3b _ { 1 } , b _ { 2 } , b _ { 3 } , give a description of the set of all b\mathbf { b } for which the equation is consistent (i.e., a condition which must be satisfied by b1,b2,b3b _ { 1 } , b _ { 2 } , b _ { 3 } ).

(Multiple Choice)
4.7/5
(31)

Solve the problem. -Determine if the columns of the matrix A=[214404210]\mathrm { A } = \left[ \begin{array} { r r r } - 2 & 1 & 4 \\ 4 & 0 & - 4 \\ 2 & 1 & 0 \end{array} \right] are linearly independent.

(Multiple Choice)
4.8/5
(40)

Find the indicated vector. -Let u=[29],v=[64]\mathbf { u } = \left[ \begin{array} { l } - 2 \\ - 9 \end{array} \right] , \mathbf { v } = \left[ \begin{array} { r } 6 \\ - 4 \end{array} \right] . Find 2u+5v- 2 \mathbf { u } + 5 \mathbf { v } .

(Multiple Choice)
4.7/5
(30)

The augmented matrix is given for a system of equations. If the system is consistent, find the general solution. Otherwise state that there is no solution. - [142310014414057]\left[ \begin{array} { r r r r r } 1 & 4 & - 2 & - 3 & 1 \\0 & 0 & 1 & 4 & - 4 \\- 1 & - 4 & 0 & - 5 & 7\end{array} \right]

(Multiple Choice)
4.8/5
(36)

Determine whether the system is consistent. - ++ =7 -+2 =7 2+3 =15

(Multiple Choice)
4.9/5
(32)

Solve the problem. -Let a1=[123],a2=[341],a3=[216]\mathbf { a } _ { \mathbf { 1 } } = \left[ \begin{array} { r } 1 \\ 2 \\ - 3 \end{array} \right] , \mathbf { a } _ { \mathbf { 2 } } = \left[ \begin{array} { r } - 3 \\ - 4 \\ 1 \end{array} \right] , \mathbf { a } _ { 3 } = \left[ \begin{array} { l } 2 \\ 1 \\ 6 \end{array} \right] , and b=[112]\mathbf { b } = \left[ \begin{array} { r } - 1 \\ 1 \\ 2 \end{array} \right] . Determine whether b\mathbf { b } can be written as a linear combination of a1,a2\mathbf { a } _ { \mathbf { 1 } } , \mathbf { a } _ { \mathbf { 2 } } , and a3\mathbf { a } _ { 3 } . In other words, determine whether weights x1,x2x _ { 1 } , x _ { 2 } , and x3x _ { 3 } exist, such that x1a1+x2a2+x3a3=bx _ { 1 } a _ { 1 } + x _ { 2 } a _ { 2 } + x _ { 3 } a _ { 3 } = b . Determine the weights x1,x2x _ { 1 } , x _ { 2 } , and x3x _ { 3 } if possible.

(Multiple Choice)
4.7/5
(31)
Showing 21 - 40 of 79
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)