Exam 1: Linear Equations in Linear Algebra

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Solve the problem. -Let A=[132251363]A = \left[ \begin{array} { r r r } 1 & - 3 & 2 \\ - 2 & 5 & - 1 \\ 3 & - 6 & - 3 \end{array} \right] and b=[b1b2b3]\mathbf { b } = \left[ \begin{array} { l } b _ { 1 } \\ b _ { 2 } \\ b _ { 3 } \end{array} \right] Determine if the equation Ax=b\mathrm { Ax } = \mathrm { b } is consistent for all possible b1, b2, b3\mathrm { b } _ { 1 } , \mathrm {~b} _ { 2 } , \mathrm {~b} _ { 3 } . If the equation is not consistent for all possible b1,b2,b3b _ { 1 } , b _ { 2 } , b _ { 3 } , give a description of the set of all b\mathbf { b } for which the equation is consistent (i.e., a condition which must be satisfied by b1,b2,b3b _ { 1 } , b _ { 2 } , b _ { 3 } ).

(Multiple Choice)
4.8/5
(30)

Write the system as a vector equation or matrix equation as indicated. -Write the following system as a vector equation involving a linear combination of vectors. 6-6-=5 6+3=-5

(Multiple Choice)
4.8/5
(27)

Solve the problem. - T(x1,x2,x3)=(4x24x3,2x1+8x2+4x3,x12x3,4x2+4x3)\mathrm { T } \left( \mathrm { x } _ { 1 } , \mathrm { x } _ { 2 } , \mathrm { x } _ { 3 } \right) = \left( - 4 \mathrm { x } _ { 2 } - 4 \mathrm { x } _ { 3 } , - 2 \mathrm { x } _ { 1 } + 8 \mathrm { x } _ { 2 } + 4 \mathrm { x } _ { 3 } , - \mathrm { x } _ { 1 } - 2 \mathrm { x } _ { 3 } , 4 \mathrm { x } _ { 2 } + 4 \mathrm { x } _ { 3 } \right) Determine whether the linear transformation T\mathrm { T } is one-to-one and whether it maps R3\mathfrak { R } ^ { 3 } onto R4\mathfrak { R } ^ { 4 } .

(Multiple Choice)
4.8/5
(31)

Solve the system of equations. - -+=8 ++=6 +-=-12

(Multiple Choice)
4.9/5
(35)

The augmented matrix is given for a system of equations. If the system is consistent, find the general solution. Otherwise state that there is no solution. - [151007]\left[ \begin{array} { r r r } 1 & - 5 & - 1 \\0 & 0 & 7\end{array} \right]

(Multiple Choice)
4.9/5
(29)

Solve the system of equations. - ++=6 ==-2 +3=11

(Multiple Choice)
4.9/5
(42)

Determine whether the linear transformation T is one-to-one and whether it maps as specified. - Determine whether the linear transformation T is one-to-one and whether it maps as specified. -   Betty would like to prepare a meal using some combination of these three foods. She would like the meal to contain  15 \mathrm {~g}  of protein,  25 \mathrm {~g}  of carbohydrate, and  3 \mathrm {~g}  of fat. How many units of each food should she use so that the meal will contain the desired amounts of protein, carbohydrate, and fat? Round to 3 decimal places. Betty would like to prepare a meal using some combination of these three foods. She would like the meal to contain 15 g15 \mathrm {~g} of protein, 25 g25 \mathrm {~g} of carbohydrate, and 3 g3 \mathrm {~g} of fat. How many units of each food should she use so that the meal will contain the desired amounts of protein, carbohydrate, and fat? Round to 3 decimal places.

(Multiple Choice)
4.9/5
(35)

Find the indicated vector. -Let u=[27],v=[85]\mathbf { u } = \left[ \begin{array} { l } 2 \\ 7 \end{array} \right] , \mathbf { v } = \left[ \begin{array} { l } - 8 \\ - 5 \end{array} \right] . Find vu\mathbf { v } - \mathbf { u } .

(Multiple Choice)
4.8/5
(19)

Solve the system of equations. - -+3 =-8 2+ =0 +5+ =40

(Multiple Choice)
5.0/5
(26)

Solve the problem. -For what values of h are the given vectors linearly dependent? 66) [146],[523],[111],[22h]\left[ \begin{array} { r } - 1 \\4 \\6\end{array} \right] , \left[ \begin{array} { r } 5 \\2 \\- 3\end{array} \right] , \left[ \begin{array} { r } - 1 \\1 \\1\end{array} \right] , \left[ \begin{array} { r } 2 \\- 2 \\h\end{array} \right]

(Multiple Choice)
4.8/5
(30)

Solve the system of equations. - 4-+3 =12 2+9 =-5 +4+6 =-32

(Multiple Choice)
4.7/5
(33)

Determine whether the linear transformation T is one-to-one and whether it maps as specified. -The population of a city in 2000 was 400,000 while the population of the suburbs of that city in 2000 was 900,000. Suppose that demographic studies show that each year about 5%5 \% of the city's population moves to the suburbs (and 95%95 \% stays in the city), while 4%4 \% of the suburban population moves to the city (and 96%96 \% remains in the suburbs). Compute the population of the city and of the suburbs in the year 2002. For simplicity, ignore other influences on the population such as births, deaths, and migration into and out of the city/suburban region.

(Multiple Choice)
4.8/5
(29)

Determine whether the system is consistent. - + +=6 -=-2 +3 =11

(Multiple Choice)
4.8/5
(39)

The augmented matrix is given for a system of equations. If the system is consistent, find the general solution. Otherwise state that there is no solution. - [158125000434000028]\left[ \begin{array} { r r r r r r } 1 & 5 & 8 & - 1 & 2 & 5 \\0 & 0 & 0 & - 4 & 3 & 4 \\0 & 0 & 0 & 0 & - 2 & 8\end{array} \right]

(Multiple Choice)
4.8/5
(33)

Solve the problem. -Let A=[130402412]\mathrm { A } = \left[ \begin{array} { r r r } 1 & - 3 & 0 \\ - 4 & 0 & 2 \\ 4 & 1 & - 2 \end{array} \right] and b=[964]\mathbf { b } = \left[ \begin{array} { r } 9 \\ - 6 \\ 4 \end{array} \right] . Define a transformation T\mathrm { T } : R3R3\mathfrak { R } ^ { 3 } \rightarrow \mathbb { R } ^ { 3 } by T(x)=Ax\mathrm { T } ( \mathbf { x } ) = \mathrm { Ax } . If possible, find a vector xx whose image under T\mathrm { T } is b\mathbf { b } . Otherwise, state that b\mathbf { b } is not in the range of the transformation T\mathrm { T } .

(Multiple Choice)
4.8/5
(37)

Compute the product or state that it is undefined. - [138568][31]\left[ \begin{array} { r r } - 1 & 3 \\- 8 & - 5 \\- 6 & - 8\end{array} \right] \left[ \begin{array} { r } 3 \\- 1\end{array} \right]

(Multiple Choice)
4.8/5
(36)

Find the indicated vector. -Let u=[92]\mathbf { u } = \left[ \begin{array} { l } - 9 \\ - 2 \end{array} \right] . Find 3u- 3 \mathbf { u } .

(Multiple Choice)
4.7/5
(31)

Solve the problem. -Let v1=[135],v2=[383],v3=[226]\mathbf { v } _ { \mathbf { 1 } } = \left[ \begin{array} { r } 1 \\ - 3 \\ 5 \end{array} \right] , \mathbf { v } _ { \mathbf { 2 } } = \left[ \begin{array} { r } - 3 \\ 8 \\ 3 \end{array} \right] , \mathbf { v } _ { 3 } = \left[ \begin{array} { r } 2 \\ - 2 \\ - 6 \end{array} \right] Determine if the set {v1,v2,v3}\left\{ \mathbf { v } _ { \mathbf { 1 } } , \mathbf { v } _ { \mathbf { 2 } } , \mathbf { v } _ { \mathbf { 3 } } \right\} is linearly independent.

(Multiple Choice)
4.9/5
(36)

Determine whether the system is consistent. - -+4 =15 -4+4-16 =4 +4+ =0

(Multiple Choice)
5.0/5
(33)
Showing 61 - 79 of 79
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)