Exam 5: A: Induction and Recursion

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Verify that the following program segment is correct with respect to the initial assertion T and the final  assertion (xymax=y)(x>ymax=x):\text { assertion } ( x \leq y \wedge \max = y ) \vee ( x > y \wedge \max = x ) :  Verify that the following program segment is correct with respect to the initial assertion T and the final   \text { assertion } ( x \leq y \wedge \max = y ) \vee ( x > y \wedge \max = x ) :

(Essay)
4.8/5
(35)

Let S be the set of positive integers defined by: Basis step: 4 \in S . Recursive step: If n \in S , then 5n+2S5 n + 2 \in S and 5n+2S5 n + 2 \in S (a) Show that if nSn \in S , then n4n \equiv 4 (mod 6). (b) Show that there exists an integer m4 m \equiv 4 (mod 6) that does not belong to SS

(Essay)
4.9/5
(34)

give a recursive definition (with initial condition(s)) of {an}(n=1,2,3,)\left\{ a _ { n } \right\} \quad ( n = 1,2,3 , \ldots ) - an=2a _ { n } = \sqrt { 2 }

(Short Answer)
4.7/5
(36)

give a recursive definition with initial condition(s). -The set {1, 5, 9, 13, 17, . . .}

(Short Answer)
4.8/5
(35)

give a recursive definition with initial condition(s). -The set {0, 3, 6, 9, . . .}

(Short Answer)
4.9/5
(24)

Let a1=2,a2=9, and an=2an1+3an2 for n3. Show that an3n for all positive integers na _ { 1 } = 2 , a _ { 2 } = 9 \text {, and } a _ { n } = 2 a _ { n - 1 } + 3 a _ { n - 2 } \text { for } n \geq 3 \text {. Show that } a _ { n } \leq 3 ^ { n } \text { for all positive integers } n \text {. }

(Essay)
4.8/5
(35)

give a recursive definition (with initial condition(s)) of {an}(n=1,2,3,)\left\{ a _ { n } \right\} \quad ( n = 1,2,3 , \ldots ) - an=2na _ { n } = 2 ^ { n }

(Short Answer)
4.8/5
(44)

Use mathematical induction to prove that 1+2n3n for all n11 + 2 ^ { n } \leq 3 ^ { n } \text { for all } n \geq 1

(Essay)
4.9/5
(30)

Use mathematical induction to prove that every integer amount of postage of six cents or more can be formed using 3-cent and 4-cent stamps.

(Essay)
4.9/5
(31)

give a recursive definition (with initial condition(s)) of {an}(n=1,2,3,)\left\{ a _ { n } \right\} \quad ( n = 1,2,3 , \ldots ) - an=(n+1)/3a _ { n } = ( n + 1 ) / 3

(Short Answer)
4.9/5
(35)

Use mathematical induction to prove that 2(n2+n) for all n02 \mid \left( n ^ { 2 } + n \right) \text { for all } n \geq 0 \text {. }

(Essay)
4.8/5
(30)
Showing 41 - 51 of 51
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)