Exam 3: Vectors

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

When vector When vector   is added to vector   , which has a magnitude of 5.0, the vector representing their sum is perpendicular to   and has a magnitude that is twice that of   . What is the magnitude of   ? is added to vector When vector   is added to vector   , which has a magnitude of 5.0, the vector representing their sum is perpendicular to   and has a magnitude that is twice that of   . What is the magnitude of   ? , which has a magnitude of 5.0, the vector representing their sum is perpendicular to When vector   is added to vector   , which has a magnitude of 5.0, the vector representing their sum is perpendicular to   and has a magnitude that is twice that of   . What is the magnitude of   ? and has a magnitude that is twice that of When vector   is added to vector   , which has a magnitude of 5.0, the vector representing their sum is perpendicular to   and has a magnitude that is twice that of   . What is the magnitude of   ? . What is the magnitude of When vector   is added to vector   , which has a magnitude of 5.0, the vector representing their sum is perpendicular to   and has a magnitude that is twice that of   . What is the magnitude of   ? ?

(Multiple Choice)
4.9/5
(35)

If If   = [15, 80°] and   , what is the magnitude of   ? = [15, 80°] and If   = [15, 80°] and   , what is the magnitude of   ? , what is the magnitude of If   = [15, 80°] and   , what is the magnitude of   ? ?

(Multiple Choice)
4.8/5
(33)

When three vectors, When three vectors,   ,   , and   are placed head to tail, the vector sum   . If the vectors all have the same magnitude, the angle between the directions of any two adjacent vectors is , When three vectors,   ,   , and   are placed head to tail, the vector sum   . If the vectors all have the same magnitude, the angle between the directions of any two adjacent vectors is , and When three vectors,   ,   , and   are placed head to tail, the vector sum   . If the vectors all have the same magnitude, the angle between the directions of any two adjacent vectors is are placed head to tail, the vector sum When three vectors,   ,   , and   are placed head to tail, the vector sum   . If the vectors all have the same magnitude, the angle between the directions of any two adjacent vectors is . If the vectors all have the same magnitude, the angle between the directions of any two adjacent vectors is

(Multiple Choice)
4.9/5
(37)

A vector starts at coordinate (3.0, 4.0) and ends at coordinate (−2.0, 16.0). What are the magnitude and direction of this vector?

(Short Answer)
4.8/5
(38)

If vector If vector   is added to vector   , the result is   . If   is subtracted from   , the result is   . What is the direction of   (to the nearest degree)? is added to vector If vector   is added to vector   , the result is   . If   is subtracted from   , the result is   . What is the direction of   (to the nearest degree)? , the result is If vector   is added to vector   , the result is   . If   is subtracted from   , the result is   . What is the direction of   (to the nearest degree)? . If If vector   is added to vector   , the result is   . If   is subtracted from   , the result is   . What is the direction of   (to the nearest degree)? is subtracted from If vector   is added to vector   , the result is   . If   is subtracted from   , the result is   . What is the direction of   (to the nearest degree)? , the result is If vector   is added to vector   , the result is   . If   is subtracted from   , the result is   . What is the direction of   (to the nearest degree)? . What is the direction of If vector   is added to vector   , the result is   . If   is subtracted from   , the result is   . What is the direction of   (to the nearest degree)? (to the nearest degree)?

(Multiple Choice)
4.7/5
(33)

Starting from one oasis, a camel walks 25 km in a direction 30° south of west and then walks 30 km toward the north to a second oasis. What distance separates the two oases?

(Multiple Choice)
4.9/5
(35)

Instructions: On occasion, the notation Instructions: On occasion, the notation   = [A, θ] will be a shorthand notation for   . Exhibit 3-3 The vectors   ,   , and   are shown below.   Use this exhibit to answer the following question(s). -Refer to Exhibit 3-3. Which diagram below correctly represents   ? = [A, θ] will be a shorthand notation for Instructions: On occasion, the notation   = [A, θ] will be a shorthand notation for   . Exhibit 3-3 The vectors   ,   , and   are shown below.   Use this exhibit to answer the following question(s). -Refer to Exhibit 3-3. Which diagram below correctly represents   ? . Exhibit 3-3 The vectors Instructions: On occasion, the notation   = [A, θ] will be a shorthand notation for   . Exhibit 3-3 The vectors   ,   , and   are shown below.   Use this exhibit to answer the following question(s). -Refer to Exhibit 3-3. Which diagram below correctly represents   ? , Instructions: On occasion, the notation   = [A, θ] will be a shorthand notation for   . Exhibit 3-3 The vectors   ,   , and   are shown below.   Use this exhibit to answer the following question(s). -Refer to Exhibit 3-3. Which diagram below correctly represents   ? , and Instructions: On occasion, the notation   = [A, θ] will be a shorthand notation for   . Exhibit 3-3 The vectors   ,   , and   are shown below.   Use this exhibit to answer the following question(s). -Refer to Exhibit 3-3. Which diagram below correctly represents   ? are shown below. Instructions: On occasion, the notation   = [A, θ] will be a shorthand notation for   . Exhibit 3-3 The vectors   ,   , and   are shown below.   Use this exhibit to answer the following question(s). -Refer to Exhibit 3-3. Which diagram below correctly represents   ? Use this exhibit to answer the following question(s). -Refer to Exhibit 3-3. Which diagram below correctly represents Instructions: On occasion, the notation   = [A, θ] will be a shorthand notation for   . Exhibit 3-3 The vectors   ,   , and   are shown below.   Use this exhibit to answer the following question(s). -Refer to Exhibit 3-3. Which diagram below correctly represents   ? ?

(Multiple Choice)
4.9/5
(45)

A vector, A vector,   , when added to the vector   yields a resultant vector which is in the positive y direction and has a magnitude equal to that of   . What is the magnitude of   ? , when added to the vector A vector,   , when added to the vector   yields a resultant vector which is in the positive y direction and has a magnitude equal to that of   . What is the magnitude of   ? yields a resultant vector which is in the positive y direction and has a magnitude equal to that of A vector,   , when added to the vector   yields a resultant vector which is in the positive y direction and has a magnitude equal to that of   . What is the magnitude of   ? . What is the magnitude of A vector,   , when added to the vector   yields a resultant vector which is in the positive y direction and has a magnitude equal to that of   . What is the magnitude of   ? ?

(Multiple Choice)
4.7/5
(36)

If If   = [2.5 cm, 80°], i.e., the magnitude and direction of   are 2.5 cm and 80°,   = [3.5 cm, 120°], and   , what is the direction of   (to the nearest degree)? = [2.5 cm, 80°], i.e., the magnitude and direction of If   = [2.5 cm, 80°], i.e., the magnitude and direction of   are 2.5 cm and 80°,   = [3.5 cm, 120°], and   , what is the direction of   (to the nearest degree)? are 2.5 cm and 80°, If   = [2.5 cm, 80°], i.e., the magnitude and direction of   are 2.5 cm and 80°,   = [3.5 cm, 120°], and   , what is the direction of   (to the nearest degree)? = [3.5 cm, 120°], and If   = [2.5 cm, 80°], i.e., the magnitude and direction of   are 2.5 cm and 80°,   = [3.5 cm, 120°], and   , what is the direction of   (to the nearest degree)? , what is the direction of If   = [2.5 cm, 80°], i.e., the magnitude and direction of   are 2.5 cm and 80°,   = [3.5 cm, 120°], and   , what is the direction of   (to the nearest degree)? (to the nearest degree)?

(Multiple Choice)
4.8/5
(28)

Given that Given that   and   , what is   ? and Given that   and   , what is   ? , what is Given that   and   , what is   ? ?

(Multiple Choice)
4.9/5
(25)

In what quadrant are both the sine and tangent negative?

(Multiple Choice)
5.0/5
(36)

If If   and   , what is the magnitude of the vector   ? and If   and   , what is the magnitude of the vector   ? , what is the magnitude of the vector If   and   , what is the magnitude of the vector   ? ?

(Multiple Choice)
4.9/5
(36)

Instructions: On occasion, the notation Instructions: On occasion, the notation   = [A, θ] will be a shorthand notation for   . Exhibit 3-3 The vectors   ,   , and   are shown below.   Use this exhibit to answer the following question(s). -Refer to Exhibit 3-4. The total displacement of the sailboat, the vector sum of its displacements OB, BC, CD and DE, is = [A, θ] will be a shorthand notation for Instructions: On occasion, the notation   = [A, θ] will be a shorthand notation for   . Exhibit 3-3 The vectors   ,   , and   are shown below.   Use this exhibit to answer the following question(s). -Refer to Exhibit 3-4. The total displacement of the sailboat, the vector sum of its displacements OB, BC, CD and DE, is . Exhibit 3-3 The vectors Instructions: On occasion, the notation   = [A, θ] will be a shorthand notation for   . Exhibit 3-3 The vectors   ,   , and   are shown below.   Use this exhibit to answer the following question(s). -Refer to Exhibit 3-4. The total displacement of the sailboat, the vector sum of its displacements OB, BC, CD and DE, is , Instructions: On occasion, the notation   = [A, θ] will be a shorthand notation for   . Exhibit 3-3 The vectors   ,   , and   are shown below.   Use this exhibit to answer the following question(s). -Refer to Exhibit 3-4. The total displacement of the sailboat, the vector sum of its displacements OB, BC, CD and DE, is , and Instructions: On occasion, the notation   = [A, θ] will be a shorthand notation for   . Exhibit 3-3 The vectors   ,   , and   are shown below.   Use this exhibit to answer the following question(s). -Refer to Exhibit 3-4. The total displacement of the sailboat, the vector sum of its displacements OB, BC, CD and DE, is are shown below. Instructions: On occasion, the notation   = [A, θ] will be a shorthand notation for   . Exhibit 3-3 The vectors   ,   , and   are shown below.   Use this exhibit to answer the following question(s). -Refer to Exhibit 3-4. The total displacement of the sailboat, the vector sum of its displacements OB, BC, CD and DE, is Use this exhibit to answer the following question(s). -Refer to Exhibit 3-4. The total displacement of the sailboat, the vector sum of its displacements OB, BC, CD and DE, is

(Multiple Choice)
4.8/5
(28)

Instructions: On occasion, the notation Instructions: On occasion, the notation   = [A, θ] will be a shorthand notation for   . Exhibit 3-1 The three forces shown act on a particle.   Use this exhibit to answer the following question(s). -Refer to Exhibit 3-1. What is the magnitude of the resultant of these three forces? = [A, θ] will be a shorthand notation for Instructions: On occasion, the notation   = [A, θ] will be a shorthand notation for   . Exhibit 3-1 The three forces shown act on a particle.   Use this exhibit to answer the following question(s). -Refer to Exhibit 3-1. What is the magnitude of the resultant of these three forces? . Exhibit 3-1 The three forces shown act on a particle. Instructions: On occasion, the notation   = [A, θ] will be a shorthand notation for   . Exhibit 3-1 The three forces shown act on a particle.   Use this exhibit to answer the following question(s). -Refer to Exhibit 3-1. What is the magnitude of the resultant of these three forces? Use this exhibit to answer the following question(s). -Refer to Exhibit 3-1. What is the magnitude of the resultant of these three forces?

(Multiple Choice)
4.8/5
(29)

Adding vectors Adding vectors   and   by the graphical method gives the same result for   +   and   +   . If both additions are done graphically from the same origin, the resultant is the vector that goes from the tail of the first vector to the tip of the second vector, i.e, it is represented by a diagonal of the parallelogram formed by showing both additions in the same figure. Note that a parallelogram has 2 diagonals. Keara says that the sum of two vectors by the parallelogram method is   . Shamu says it is   . Both used the parallelogram method, but one used the wrong diagonal. Which one of the vector pairs below contains the original two vectors? and Adding vectors   and   by the graphical method gives the same result for   +   and   +   . If both additions are done graphically from the same origin, the resultant is the vector that goes from the tail of the first vector to the tip of the second vector, i.e, it is represented by a diagonal of the parallelogram formed by showing both additions in the same figure. Note that a parallelogram has 2 diagonals. Keara says that the sum of two vectors by the parallelogram method is   . Shamu says it is   . Both used the parallelogram method, but one used the wrong diagonal. Which one of the vector pairs below contains the original two vectors? by the graphical method gives the same result for Adding vectors   and   by the graphical method gives the same result for   +   and   +   . If both additions are done graphically from the same origin, the resultant is the vector that goes from the tail of the first vector to the tip of the second vector, i.e, it is represented by a diagonal of the parallelogram formed by showing both additions in the same figure. Note that a parallelogram has 2 diagonals. Keara says that the sum of two vectors by the parallelogram method is   . Shamu says it is   . Both used the parallelogram method, but one used the wrong diagonal. Which one of the vector pairs below contains the original two vectors? + Adding vectors   and   by the graphical method gives the same result for   +   and   +   . If both additions are done graphically from the same origin, the resultant is the vector that goes from the tail of the first vector to the tip of the second vector, i.e, it is represented by a diagonal of the parallelogram formed by showing both additions in the same figure. Note that a parallelogram has 2 diagonals. Keara says that the sum of two vectors by the parallelogram method is   . Shamu says it is   . Both used the parallelogram method, but one used the wrong diagonal. Which one of the vector pairs below contains the original two vectors? and Adding vectors   and   by the graphical method gives the same result for   +   and   +   . If both additions are done graphically from the same origin, the resultant is the vector that goes from the tail of the first vector to the tip of the second vector, i.e, it is represented by a diagonal of the parallelogram formed by showing both additions in the same figure. Note that a parallelogram has 2 diagonals. Keara says that the sum of two vectors by the parallelogram method is   . Shamu says it is   . Both used the parallelogram method, but one used the wrong diagonal. Which one of the vector pairs below contains the original two vectors? + Adding vectors   and   by the graphical method gives the same result for   +   and   +   . If both additions are done graphically from the same origin, the resultant is the vector that goes from the tail of the first vector to the tip of the second vector, i.e, it is represented by a diagonal of the parallelogram formed by showing both additions in the same figure. Note that a parallelogram has 2 diagonals. Keara says that the sum of two vectors by the parallelogram method is   . Shamu says it is   . Both used the parallelogram method, but one used the wrong diagonal. Which one of the vector pairs below contains the original two vectors? . If both additions are done graphically from the same origin, the resultant is the vector that goes from the tail of the first vector to the tip of the second vector, i.e, it is represented by a diagonal of the parallelogram formed by showing both additions in the same figure. Note that a parallelogram has 2 diagonals. Keara says that the sum of two vectors by the parallelogram method is Adding vectors   and   by the graphical method gives the same result for   +   and   +   . If both additions are done graphically from the same origin, the resultant is the vector that goes from the tail of the first vector to the tip of the second vector, i.e, it is represented by a diagonal of the parallelogram formed by showing both additions in the same figure. Note that a parallelogram has 2 diagonals. Keara says that the sum of two vectors by the parallelogram method is   . Shamu says it is   . Both used the parallelogram method, but one used the wrong diagonal. Which one of the vector pairs below contains the original two vectors? . Shamu says it is Adding vectors   and   by the graphical method gives the same result for   +   and   +   . If both additions are done graphically from the same origin, the resultant is the vector that goes from the tail of the first vector to the tip of the second vector, i.e, it is represented by a diagonal of the parallelogram formed by showing both additions in the same figure. Note that a parallelogram has 2 diagonals. Keara says that the sum of two vectors by the parallelogram method is   . Shamu says it is   . Both used the parallelogram method, but one used the wrong diagonal. Which one of the vector pairs below contains the original two vectors? . Both used the parallelogram method, but one used the wrong diagonal. Which one of the vector pairs below contains the original two vectors?

(Multiple Choice)
4.8/5
(34)

If If   and   , what is the direction of the vector   ? and If   and   , what is the direction of the vector   ? , what is the direction of the vector If   and   , what is the direction of the vector   ? ?

(Multiple Choice)
4.9/5
(42)

Instructions: On occasion, the notation Instructions: On occasion, the notation   = [A, θ] will be a shorthand notation for   . -A student decides to spend spring break by driving 50 miles due east, then 50 miles 30 degrees south of east, then 50 miles 30 degrees south of that direction, and to continue to drive 50 miles deviating by 30 degrees each time until he returns to his original position. How far will he drive, and how many vectors must he sum to calculate his displacement? = [A, θ] will be a shorthand notation for Instructions: On occasion, the notation   = [A, θ] will be a shorthand notation for   . -A student decides to spend spring break by driving 50 miles due east, then 50 miles 30 degrees south of east, then 50 miles 30 degrees south of that direction, and to continue to drive 50 miles deviating by 30 degrees each time until he returns to his original position. How far will he drive, and how many vectors must he sum to calculate his displacement? . -A student decides to spend spring break by driving 50 miles due east, then 50 miles 30 degrees south of east, then 50 miles 30 degrees south of that direction, and to continue to drive 50 miles deviating by 30 degrees each time until he returns to his original position. How far will he drive, and how many vectors must he sum to calculate his displacement?

(Multiple Choice)
4.9/5
(35)

Instructions: On occasion, the notation Instructions: On occasion, the notation   = [A, θ] will be a shorthand notation for   . Exhibit 3-3 The vectors   ,   , and   are shown below.   Use this exhibit to answer the following question(s). -Refer to Exhibit 3-4. The total distance it travels is = [A, θ] will be a shorthand notation for Instructions: On occasion, the notation   = [A, θ] will be a shorthand notation for   . Exhibit 3-3 The vectors   ,   , and   are shown below.   Use this exhibit to answer the following question(s). -Refer to Exhibit 3-4. The total distance it travels is . Exhibit 3-3 The vectors Instructions: On occasion, the notation   = [A, θ] will be a shorthand notation for   . Exhibit 3-3 The vectors   ,   , and   are shown below.   Use this exhibit to answer the following question(s). -Refer to Exhibit 3-4. The total distance it travels is , Instructions: On occasion, the notation   = [A, θ] will be a shorthand notation for   . Exhibit 3-3 The vectors   ,   , and   are shown below.   Use this exhibit to answer the following question(s). -Refer to Exhibit 3-4. The total distance it travels is , and Instructions: On occasion, the notation   = [A, θ] will be a shorthand notation for   . Exhibit 3-3 The vectors   ,   , and   are shown below.   Use this exhibit to answer the following question(s). -Refer to Exhibit 3-4. The total distance it travels is are shown below. Instructions: On occasion, the notation   = [A, θ] will be a shorthand notation for   . Exhibit 3-3 The vectors   ,   , and   are shown below.   Use this exhibit to answer the following question(s). -Refer to Exhibit 3-4. The total distance it travels is Use this exhibit to answer the following question(s). -Refer to Exhibit 3-4. The total distance it travels is

(Multiple Choice)
4.9/5
(36)

Given two non-zero vectors, Given two non-zero vectors,   and   , such that   , the sum   satisfies and Given two non-zero vectors,   and   , such that   , the sum   satisfies , such that Given two non-zero vectors,   and   , such that   , the sum   satisfies , the sum Given two non-zero vectors,   and   , such that   , the sum   satisfies satisfies

(Multiple Choice)
4.8/5
(40)

If If   = [10 m, 30°] and   = [25 m, 130°], what is the magnitude of the sum of these two vectors? = [10 m, 30°] and If   = [10 m, 30°] and   = [25 m, 130°], what is the magnitude of the sum of these two vectors? = [25 m, 130°], what is the magnitude of the sum of these two vectors?

(Multiple Choice)
4.8/5
(28)
Showing 21 - 40 of 47
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)