Exam 2: Limits and Derivatives

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

 If f(t)=9t+1, find f(4)\text { If } f ( t ) = \sqrt { 9 t + 1 } \text {, find } f ^ { \prime \prime } ( 4 )

(Short Answer)
4.9/5
(32)

Find d2ydx2\frac { d ^ { 2 } y } { d x ^ { 2 } } in terms of xx and yy . x7y7=1x ^ { 7 } - y ^ { 7 } = 1

(Short Answer)
4.8/5
(39)

 Find the instantaneous rate of change of the function f(x)=3x when x=3\text { Find the instantaneous rate of change of the function } f ( x ) = \sqrt { 3 x } \text { when } x = 3 \text {. }

(Short Answer)
4.9/5
(32)

 If y=2x2+7x and dxdt=6, find dydt when x=4\text { If } y = 2 x ^ { 2 } + 7 x \text { and } \frac { d x } { d t } = 6 , \text { find } \frac { d y } { d t } \text { when } x = 4

(Short Answer)
4.7/5
(41)

 Find the points on the curve y=2x3+3x236x+19 where the tangent is horizontal. \text { Find the points on the curve } y = 2 x ^ { 3 } + 3 x ^ { 2 } - 36 x + 19 \text { where the tangent is horizontal. }

(Short Answer)
4.9/5
(34)

Find ff ^ { \prime } in terms of gg ^ { \prime } . f(x)=[g(x)]4f ( x ) = [ g ( x ) ] ^ { 4 }

(Short Answer)
4.9/5
(43)

Find the derivative of the function. f(x)=2xx2+9f ( x ) = \frac { 2 \sqrt { x } } { x ^ { 2 } + 9 }

(Multiple Choice)
4.8/5
(31)

Find f(x)f ^ { \prime \prime } ( x ) f(x)=(2x)5(7x)2+5f ( x ) = ( 2 x ) ^ { 5 } - ( 7 x ) ^ { 2 } + 5

(Short Answer)
4.9/5
(37)

Find the derivative of the function. y=3cos1(sin1t)y = 3 \cos ^ { - 1 } \left( \sin ^ { - 1 } t \right)

(Multiple Choice)
4.8/5
(42)

Gravel is being dumped from a conveyor belt at a rate of 34ft/min34 \mathrm { ft } / \mathrm { min } and its coarseness is such that it forms a pile in the shape of a cone whose base diameter and height are always equal. How fast is the height of the pile increasing when the pile is 13ft13 \mathrm { ft } high? Round the result to the nearest hundredth.  Gravel is being dumped from a conveyor belt at a rate of  34 \mathrm { ft } / \mathrm { min }  and its coarseness is such that it forms a pile in the shape of a cone whose base diameter and height are always equal. How fast is the height of the pile increasing when the pile is  13 \mathrm { ft }  high? Round the result to the nearest hundredth.

(Multiple Choice)
4.8/5
(39)

Find the derivative of the function. g(v)=sinv8vcscvg ( v ) = \sin v - 8 v \csc v

(Short Answer)
4.8/5
(34)

The top of a ladder slides down a vertical wall at a rate of 0.15 m/s0.15 \mathrm {~m} / \mathrm { s } . At the moment when the bottom of the ladder is 1.5 m1.5 \mathrm {~m} from the wall, it slides away from the wall at a rate of 0.3 m/s0.3 \mathrm {~m} / \mathrm { s } . How long is the ladder?

(Short Answer)
4.8/5
(30)

Calculate yy ^ { \prime } . xy3+x3y=x+3yx y ^ { 3 } + x ^ { 3 } y = x + 3 y

(Multiple Choice)
4.9/5
(39)

s(t)s ( t ) is the position of a body moving along a coordinate line; s(t)s ( t ) is measured in feet and tt in seconds, where t0t \geq 0 . Find the position, velocity, and speed of the body at the indicated time. s(t)=t10et;t=1s ( t ) = t ^ { 10 } e ^ { - t } ; \quad t = 1

(Short Answer)
4.8/5
(39)

Find ff ^ { \prime } in terms of gg ^ { \prime } . f(x)=[g(x)]4f ( x ) = [ g ( x ) ] ^ { 4 }

(Short Answer)
4.8/5
(32)

Use differentials to estimate the amount of paint needed to apply a coat of paint 0.0017 cm0.0017 \mathrm {~cm} thick to a hemispherical dome with diameter 70 m70 \mathrm {~m} . Select the correct answer.

(Multiple Choice)
4.9/5
(32)

Calculate yy ^ { \prime } . xy3+x3y=x+3yx y ^ { 3 } + x ^ { 3 } y = x + 3 y

(Short Answer)
4.8/5
(40)

 Find the tangent line to the ellipse x240+y210=1 at the point (2,3)\text { Find the tangent line to the ellipse } \frac { x ^ { 2 } } { 40 } + \frac { y ^ { 2 } } { 10 } = 1 \text { at the point } ( 2 , - \sqrt { 3 } ) \text {. }

(Short Answer)
4.9/5
(34)

If ff is a differentiable function, find an expression for the derivative of y=x3f(x)y = x ^ { 3 } f ( x ) .

(Multiple Choice)
4.8/5
(46)
Showing 121 - 139 of 139
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)