Exam 11: Infinite Sequences and Series

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Determine whether the given series is convergent or divergent. n=21n(lnn)2\sum _ { n = 2 } ^ { \infty } \frac { 1 } { n ( \ln n ) ^ { 2 } }

(Short Answer)
4.9/5
(37)

Which of the given series are absolutely convergent? Select the correct answer.

(Multiple Choice)
4.8/5
(31)

Test the series for convergence or divergence. m=1(4)mlnmm\sum _ { m = 1 } ^ { \infty } ( - 4 ) ^ { m } \frac { \ln m } { \sqrt { m } }

(Short Answer)
4.9/5
(39)

Determine whether the series is absolutely convergent, conditionally convergent, or divergent. n=1(1)narctannn4\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n } \arctan n } { n ^ { 4 } }

(Multiple Choice)
4.8/5
(41)

If $600\$ 600 is invested at 4%4 \% interest, compounded annually, then after nn years the investment is worth an=600(1.04)na _ { n } = 600 ( 1.04 ) ^ { n } dollars. Find the size of investment after 7 years.

(Multiple Choice)
4.7/5
(34)

Determine whether the given series converges or diverges. If it converges, find its sum. n=09n+8n12n\sum _ { n = 0 } ^ { \infty } \frac { 9 ^ { n } + 8 ^ { n } } { 12 ^ { n } }

(Short Answer)
4.8/5
(27)

Find an expression for the nth n ^ { \text {th } } term of the sequence. (Assume that the pattern continues.) {225,436,649,864,1081,}\left\{ \frac { 2 } { 25 } , \frac { 4 } { 36 } , \frac { 6 } { 49 } , \frac { 8 } { 64 } , \frac { 10 } { 81 } , \cdots \right\}

(Short Answer)
4.8/5
(37)

Determine which series is convergent.

(Multiple Choice)
4.9/5
(45)

Use the Alternating Series Estimation Theorem or Taylor's Inequality to estimate the range of values of xx for which the given approximation is accurate to within the stated error. cosx1x22+x424\cos x \approx 1 - \frac { x ^ { 2 } } { 2 } + \frac { x ^ { 4 } } { 24 } \quad error <0.08\mid < 0.08 Write aa such that a<x<a- a < x < a .

(Short Answer)
4.8/5
(28)

Find the radius of convergence and the interval of convergence of the power series. n=13693n4710(3n+1)x2n+1\sum _ { n = 1 } ^ { \infty } \frac { 3 \cdot 6 \cdot 9 \cdot \cdots \cdot 3 n } { 4 \cdot 7 \cdot 10 \cdots \cdot ( 3 n + 1 ) } x ^ { 2 n + 1 }

(Short Answer)
4.9/5
(28)

Use series to evaluate the limit correct to three decimal places. limx07xtan17xx3\lim _ { x \rightarrow 0 } \frac { 7 x - \tan ^ { - 1 } 7 x } { x ^ { 3 } } Select the correct answer.

(Multiple Choice)
4.9/5
(36)

Determine whether the series is convergent or divergent. n=1tan1nnn+7\sum _ { n = 1 } ^ { \infty } \frac { \tan ^ { - 1 } n } { n \sqrt { n + 7 } }

(Short Answer)
4.7/5
(24)

Find the radius of convergence and the interval of convergence of the power series. n=2xnn(lnn)8\sum _ { n = 2 } ^ { \infty } \frac { x ^ { n } } { n ( \ln n ) ^ { 8 } }

(Short Answer)
4.9/5
(46)

Find the interval of convergence of the series. Select the correct answer. n=1(1)nxnn+3\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n } x ^ { n } } { n + 3 }

(Multiple Choice)
4.8/5
(32)

Find a formula for the general term ana _ { n } of the sequence, assuming that the pattern of the first few terms continues. {12,163,814,2565,6256,}\left\{ - \frac { 1 } { 2 } , \frac { 16 } { 3 } , - \frac { 81 } { 4 } , \frac { 256 } { 5 } , - \frac { 625 } { 6 } , \ldots \right\}

(Short Answer)
4.7/5
(37)

Test the series for convergence or divergence. m=14mm3m!\sum _ { m = 1 } ^ { \infty } \frac { 4 ^ { m } m ^ { 3 } } { m ! }

(Short Answer)
4.8/5
(38)

Determine whether the series is convergent or divergent. n=1(n!)4(7n)!\sum _ { n = 1 } ^ { \infty } \frac { ( n ! ) ^ { 4 } } { ( 7 n ) ! }

(Short Answer)
4.9/5
(36)

Find the radius of convergence of the series. n=1n3xn2n\sum _ { n = 1 } ^ { \infty } \frac { n ^ { 3 } x ^ { n } } { 2 ^ { n } }

(Short Answer)
4.7/5
(29)

A rubber ball is dropped from a height of 8 m8 \mathrm {~m} onto a flat surface. Each time the ball hits the surface, it rebounds to 50%50 \% of its previous height. Find the total distance the ball travels.

(Multiple Choice)
4.8/5
(35)

Find the radius of convergence and the interval of convergence of the power series. n=0(7x)nn!\sum _ { n = 0 } ^ { \infty } \frac { ( 7 x ) ^ { n } } { n ! }

(Multiple Choice)
4.8/5
(39)
Showing 21 - 40 of 159
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)