Exam 11: Infinite Sequences and Series

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Suppose that the radius of convergence of the power series n=0cnxn\sum _ { n = 0 } ^ { \infty } c _ { n } x ^ { n } is 9 . What is the radius of convergence of the power series n=0cnx2n\sum _ { n = 0 } ^ { \infty } c _ { n } x ^ { 2 n } .

(Multiple Choice)
4.8/5
(37)

Determine whether the sequence convergent or divergent. n=11n26n+10\sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ^ { 2 } - 6 n + 10 }

(Short Answer)
4.8/5
(37)

Determine whether the given series converges or diverges. If it converges, find its sum. n=1(1+5n)n\sum _ { n = 1 } ^ { \infty } \left( 1 + \frac { 5 } { n } \right) ^ { n }

(Short Answer)
4.9/5
(36)

Determine whether the sequence defined by an=sin2n9na _ { n } = \frac { \sin 2 n } { 9 n } converges or diverges. If it converges, find its limit.

(Short Answer)
4.8/5
(43)

Test the series for convergence or divergence. m=1(6)m+148m\sum _ { m = 1 } ^ { \infty } \frac { ( - 6 ) ^ { m + 1 } } { 4 ^ { 8 m } }

(Short Answer)
4.7/5
(42)

Which of the given series are absolutely convergent?

(Multiple Choice)
4.8/5
(40)

Determine whether the series is absolutely convergent, conditionally convergent, or divergent. Select the correct answer. n=1(4n2+33n2+4)n\sum _ { n = 1 } ^ { \infty } \left( \frac { 4 n ^ { 2 } + 3 } { 3 n ^ { 2 } + 4 } \right) ^ { n }

(Multiple Choice)
4.9/5
(32)

Use series to evaluate the limit correct to three decimal places. limx07xtan17xx3\lim _ { x \rightarrow 0 } \frac { 7 x - \tan ^ { - 1 } 7 x } { x ^ { 3 } } Select the correct answer.

(Short Answer)
4.8/5
(41)

A rubber ball is dropped from a height of 8 m8 \mathrm {~m} onto a flat surface. Each time the ball hits the surface, it rebounds to 50%50 \% of its previous height. Find the total distance the ball travels. Select the correct answer.

(Multiple Choice)
4.9/5
(33)

Determine whether the sequence converges or diverges. If it converges, find the limit. an=en/(n+6)a _ { n } = e ^ { n / ( n + 6 ) }

(Short Answer)
4.9/5
(38)

Find a power series representation for f(t)=ln(14t)f ( t ) = \ln ( 14 - t )

(Multiple Choice)
4.9/5
(36)

Determine which series is convergent. Select the correct answer.

(Multiple Choice)
4.7/5
(34)

Determine whether the series is convergent or divergent. n=1tan1nnn+6\sum _ { n = 1 } ^ { \infty } \frac { \tan ^ { - 1 } n } { n \sqrt { n + 6 } }

(Short Answer)
4.7/5
(41)

How many terms of the series do we need to add in order to find the sum to the indicated accuracy? Select the correct answer. n=12(1)n+1n2( |error )<0.0798\sum _ { n = 1 } ^ { \infty } 2 \frac { ( - 1 ) ^ { n + 1 } } { n ^ { 2 } } ( \text { |error } \mid ) < 0.0798

(Multiple Choice)
4.8/5
(44)

Find the values of pp for which the series is convergent. n=2(1)n(ln(n6))p\sum _ { n = 2 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { \left( \ln \left( n ^ { 6 } \right) \right) ^ { p } }

(Multiple Choice)
4.9/5
(32)

A sequenceis {an}\left\{ a _ { n } \right\} defined recursively by the equation an=0.5(an1+an2)a _ { n } = 0.5 \left( a _ { n - 1 } + a _ { n - 2 } \right) for n3n \geq 3 where a1=14,a2=14a _ { 1 } = 14 , a _ { 2 } = 14 . Use your calculator to guess the limit of the sequence.

(Multiple Choice)
4.8/5
(35)

Test the series for convergence or divergence. n=01n5+8\sum _ { n = 0 } ^ { \infty } \frac { 1 } { \sqrt { n ^ { 5 } + 8 } }

(Short Answer)
4.7/5
(31)

Determine whether the geometric series converges or diverges. If it converges, find its sum. n=05n6n+1\sum _ { n = 0 } ^ { \infty } 5 ^ { n } 6 ^ { - n + 1 }

(Multiple Choice)
4.9/5
(27)

Determine whether the series is convergent or divergent. n=1(n!)4(7n)!\sum _ { n = 1 } ^ { \infty } \frac { ( n ! ) ^ { 4 } } { ( 7 n ) ! }

(Short Answer)
4.9/5
(45)

Use multiplication or division of power series to find the first three nonzero terms in the Maclaurin series for the function. f(x)=5ex2cos4xf ( x ) = 5 e ^ { - x ^ { 2 } } \cos 4 x

(Multiple Choice)
4.7/5
(27)
Showing 61 - 80 of 159
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)