Exam 11: Infinite Sequences and Series

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find all positive values of uu for which the series m=16um7m\sum _ { m = 1 } ^ { \infty } 6 u ^ { m } 7 m converges,

(Multiple Choice)
4.9/5
(40)

Determine whether the geometric series converges or diverges. If it converges, find its sum. n=05n6n+1\sum _ { n = 0 } ^ { \infty } 5 ^ { n } 6 ^ { - n + 1 }

(Multiple Choice)
4.9/5
(37)

Find an approximation of the sum of the series accurate to two decimal places. n=1(1)nn3\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { n ^ { 3 } }

(Short Answer)
4.8/5
(45)

Test the series for convergence or divergence. k=55k(lnk)7\sum _ { k = 5 } ^ { \infty } \frac { 5 } { k ( \ln k ) ^ { 7 } }

(Short Answer)
4.8/5
(41)

Find the radius of convergence of the series. n=1n3xn2n\sum _ { n = 1 } ^ { \infty } \frac { n ^ { 3 } x ^ { n } } { 2 ^ { n } }

(Short Answer)
4.9/5
(37)

 Find the exact value of the limit of the sequence defined by a1=4,an+1=4+an\text { Find the exact value of the limit of the sequence defined by } a _ { 1 } = \sqrt { 4 } , a _ { n + 1 } = \sqrt { 4 + a _ { n } } \text {. }

(Short Answer)
4.9/5
(33)

Determine which one of the pp -series below is divergent.

(Multiple Choice)
4.8/5
(41)

Find the radius of convergence of the series. Select the correct answer. n=1(1)n(x+10)nn6n\sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n } \frac { ( x + 10 ) ^ { n } } { n 6 ^ { n } }

(Multiple Choice)
4.8/5
(36)

Find an approximation of the sum of the series accurate to two decimal places. n=1(1)nn3\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { n ^ { 3 } }

(Short Answer)
4.8/5
(38)

Test the series for convergence or divergence. k=1(6)k+172k\sum _ { k = 1 } ^ { \infty } \frac { ( - 6 ) ^ { k + 1 } } { 7 ^ { 2 k } }

(Short Answer)
4.7/5
(39)

Use the Alternating Series Estimation Theorem or Taylor's Inequality to estimate the range of values of xx for which the given approximation is accurate to within the stated error. cosx1x22+x424\cos x \approx 1 - \frac { x ^ { 2 } } { 2 } + \frac { x ^ { 4 } } { 24 } \quad \mid error <0.08\mid < 0.08 Write aa such that a<x<a- a < x < a .

(Short Answer)
4.9/5
(37)

Determine whether the sequence defined by an=5n8n+1a _ { n } = \frac { 5 ^ { n } } { 8 ^ { n } + 1 } converges or diverges. If it converges, find its limit.

(Multiple Choice)
4.8/5
(37)

Determine whether the sequence converges or diverges. If it converges, find the limit. an=2e4n/(n+2)a _ { n } = 2 e ^ { 4 n / ( n + 2 ) }

(Short Answer)
4.8/5
(43)

Find the radius of convergence of the series. Select the correct answer. n=1(1)n(x+10)nn6n\sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n } \frac { ( x + 10 ) ^ { n } } { n 6 ^ { n } }

(Multiple Choice)
4.9/5
(37)

Find the radius of convergence and the interval of convergence of the power series. n=0(7x)nn!\sum _ { n = 0 } ^ { \infty } \frac { ( 7 x ) ^ { n } } { n ! }

(Short Answer)
4.9/5
(24)

If $600\$ 600 is invested at 4%4 \% interest, compounded annually, then after nn years the investment is worth an=600(1.04)na _ { n } = 600 ( 1.04 ) ^ { n } dollars. Find the size of investment after 7 years.

(Short Answer)
4.8/5
(33)

Determine whether the sequence defined by an=5+8(1)na _ { n } = 5 + 8 ( - 1 ) ^ { n } converges or diverges. If it converges, find its limit. Select the correct answer.

(Multiple Choice)
4.8/5
(35)

Determine whether the sequence defined by an=5+8(1)na _ { n } = 5 + 8 ( - 1 ) ^ { n } converges or diverges. If it converges, find its limit.

(Multiple Choice)
4.9/5
(38)

Find all values of pp for which the series n=1ln(n9)np\sum _ { n = 1 } ^ { \infty } \frac { \ln \left( n ^ { 9 } \right) } { n ^ { p } } converges.

(Short Answer)
4.7/5
(42)

Find an approximation of the sum of the series accurate to two decimal places. n=1(1)nn3\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { n ^ { 3 } }

(Multiple Choice)
4.9/5
(36)
Showing 121 - 140 of 159
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)