Exam 11: Infinite Sequences and Series

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the Maclaurin series for f(x)f ( x ) using the definition of the Maclaurin series. f(x)=xcos(4x)f ( x ) = x \cos ( 4 x )

(Short Answer)
4.8/5
(38)

 Use the power series for f(x)=5+x3 to estimate 5.073 correct to four decimal places. \text { Use the power series for } f ( x ) = \sqrt [ 3 ] { 5 + x } \text { to estimate } \sqrt [ 3 ] { 5.07 } \text { correct to four decimal places. }

(Short Answer)
4.8/5
(35)

Find the Maclaurin series for f(x)f ( x ) using the definition of the Maclaurin series. f(x)=xcos(4x)f ( x ) = x \cos ( 4 x )

(Multiple Choice)
4.7/5
(35)

Find the radius of convergence and the interval of convergence of the power series. \\backslash Select the correct answer. n=13693n4710(3n+1)x2n+1\sum _ { n = 1 } ^ { \infty } \frac { 3 \cdot 6 \cdot 9 \cdot \cdots \cdot 3 n } { 4 \cdot 7 \cdot 10 \cdots \cdot ( 3 n + 1 ) } x ^ { 2 n + 1 }

(Multiple Choice)
4.9/5
(44)

If $600\$ 600 is invested at 4%4 \% interest, compounded annually, then after nn years the investment is worth an=600(1.04)na _ { n } = 600 ( 1.04 ) ^ { n } dollars. Find the size of investment after 7 years.

(Short Answer)
4.9/5
(33)

Given the series m=13m4m(3m+5)\sum _ { m = 1 } ^ { \infty } \frac { 3 m } { 4 ^ { m } ( 3 m + 5 ) } estimate the error in using the partial sum s8s _ { 8 } by comparison with the series m914m\sum _ { m - 9 } ^ { \infty } \frac { 1 } { 4 ^ { m } } .

(Short Answer)
4.8/5
(32)

Determine whether the series is absolutely convergent, conditionally convergent, or divergent. n=1(1)n1n6\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n - 1 } } { \sqrt [ 6 ] { n } }

(Short Answer)
4.8/5
(35)

Find the Maclaurin series for f(x)f ( x ) using the definition of a Maclaurin serires. f(x)=(3+x)3f ( x ) = ( 3 + x ) ^ { - 3 }

(Short Answer)
5.0/5
(34)

Determine whether the series is convergent or divergent by expressing SnS _ { n } as a telescoping sum. If it is convergent, find its sum. n=25n(n21)\sum _ { n = 2 } ^ { \infty } \frac { 5 } { n \left( n ^ { 2 } - 1 \right) }

(Short Answer)
4.7/5
(36)

Use the binomial series to expand the function as a power series. Find the radius of convergence. 1(4+x)5\frac { 1 } { ( 4 + x ) ^ { 5 } }

(Short Answer)
4.8/5
(38)

Use series to approximate the definite integral to within the indicated accuracy. 00.5x2ex2dxerror<0.001\int _ { 0 } ^ { 0.5 } x ^ { 2 } e ^ { - x ^ { 2 } } d x \quad | e r r o r | < 0.001

(Multiple Choice)
4.8/5
(43)

Test the series for convergence or divergence. k=55k(lnk)7\sum _ { k = 5 } ^ { \infty } \frac { 5 } { k ( \ln k ) ^ { 7 } }

(Short Answer)
4.9/5
(42)

Determine whether the given series converges or diverges. If it converges, find its sum. n=09n2+32n2+5\sum _ { n = 0 } ^ { \infty } \frac { 9 n ^ { 2 } + 3 } { 2 n ^ { 2 } + 5 }

(Short Answer)
4.9/5
(26)

Determine whether the geometric series converges or diverges. If it converges, find its sum. n=03n4n+1\sum _ { n = 0 } ^ { \infty } 3 ^ { n } 4 ^ { - n + 1 }

(Multiple Choice)
4.9/5
(33)

Determine whether the series converges or diverges. n=1(1)nn2n\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n } n } { 2 ^ { n } }

(Short Answer)
4.7/5
(35)

Find an approximation of the sum of the series accurate to two decimal places. n=1(1)nn3\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { n ^ { 3 } }

(Short Answer)
4.8/5
(38)

 The terms of a series are defined recursively by the equations a1=6,an+1=7n+16n+3an\text { The terms of a series are defined recursively by the equations } a _ { 1 } = 6 , a _ { n + 1 } = \frac { 7 n + 1 } { 6 n + 3 } a _ { n } \text {. }  Determine whether an converges or diverges. \text { Determine whether } \sum a _ { n } \text { converges or diverges. }

(Short Answer)
4.7/5
(38)

 Express the number 0.81 as a ratio of integers. \text { Express the number } 0 . \overline { 81 } \text { as a ratio of integers. }

(Short Answer)
4.9/5
(32)

Use the power series for f(x)=5+x3f ( x ) = \sqrt [ 3 ] { 5 + x } to estimate 5.073\sqrt [ 3 ] { 5.07 } correct to four decimal places. Select the correct answer.

(Multiple Choice)
4.9/5
(37)

Approximate the sum to the indicated accuracy. n=14(1)n1n7\sum _ { n = 1 } ^ { \infty } \frac { 4 ( - 1 ) ^ { n - 1 } } { n ^ { 7 } } (five decimal places)

(Short Answer)
4.7/5
(37)
Showing 101 - 120 of 159
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)