Exam 11: Infinite Sequences and Series

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Determine whether the sequence defined by an=n256n2+1a _ { n } = \frac { n ^ { 2 } - 5 } { 6 n ^ { 2 } + 1 } converges or diverges. If it converges, find its limit. Select the correct answer.

(Multiple Choice)
4.8/5
(32)

Determine whether the geometric series converges or diverges. If it converges, find its sum. 15+1251125+1625- \frac { 1 } { 5 } + \frac { 1 } { 25 } - \frac { 1 } { 125 } + \frac { 1 } { 625 } - \cdots

(Multiple Choice)
4.9/5
(40)

Write the first five terms of the sequence {an}\left\{ a _ { n } \right\} whose nth n ^ { \text {th } } term is given. an=n+76n1a _ { n } = \frac { n + 7 } { 6 n - 1 }

(Short Answer)
4.8/5
(42)

Determine whether the geometric series converges or diverges. If it converges, find its sum. 15+1251125+1625- \frac { 1 } { 5 } + \frac { 1 } { 25 } - \frac { 1 } { 125 } + \frac { 1 } { 625 } - \cdots

(Short Answer)
4.9/5
(33)

Find the radius of convergence and the interval of convergence of the power series. n=0xnn+2\sum _ { n = 0 } ^ { \infty } \frac { x ^ { n } } { n + 2 }

(Short Answer)
4.9/5
(41)

Determine whether the series is absolutely convergent, conditionally convergent, or divergent. n=1(1)narctannn4\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n } \arctan n } { n ^ { 4 } } Select the correct answer.

(Multiple Choice)
4.9/5
(41)

 Determine which one of the p-series below is convergent. \text { Determine which one of the } p \text {-series below is convergent. }

(Short Answer)
4.9/5
(38)

Determine whether the sequence defined by an=n256n2+1a _ { n } = \frac { n ^ { 2 } - 5 } { 6 n ^ { 2 } + 1 } converges or diverges. If it converges, find its limit.

(Multiple Choice)
4.8/5
(43)

Approximate the sum to the indicated accuracy. n=14(1)n1n7\sum _ { n = 1 } ^ { \infty } \frac { 4 ( - 1 ) ^ { n - 1 } } { n ^ { 7 } } (five decimal places)

(Short Answer)
4.9/5
(35)

Find a power series representation for the function. f(y)=ln(11+y11y)f ( y ) = \ln \left( \frac { 11 + y } { 11 - y } \right)

(Short Answer)
4.7/5
(34)

Find all positive values of uu for which the series m=16um7m\sum _ { m = 1 } ^ { \infty } 6 u ^ { m } 7 m converges.

(Multiple Choice)
4.9/5
(40)

Suppose that the radius of convergence of the power series n=0cnxn\sum _ { n = 0 } ^ { \infty } c _ { n } x ^ { n } is 9 . What is the radius of convergence of the power series n=0cnx2n\sum _ { n = 0 } ^ { \infty } c _ { n } x ^ { 2 n } .

(Short Answer)
4.9/5
(38)

Find the sum of the ser n=02n3nn!\sum _ { n = 0 } ^ { \infty } \frac { 2 ^ { n } } { 3 ^ { n } n ! }

(Short Answer)
4.7/5
(36)

Find the sum of the series. 21322232+2333324434+\frac { 2 } { 1 \cdot 3 } - \frac { 2 ^ { 2 } } { 2 \cdot 3 ^ { 2 } } + \frac { 2 ^ { 3 } } { 3 \cdot 3 ^ { 3 } } - \frac { 2 ^ { 4 } } { 4 \cdot 3 ^ { 4 } } + \ldots

(Multiple Choice)
4.8/5
(33)

Use the sum of the first 9 terms to approximate the sum of the following series. n=16n7+n2\sum _ { n = 1 } ^ { \infty } \frac { 6 } { n ^ { 7 } + n ^ { 2 } } Write your answer to six decimal places.

(Short Answer)
4.8/5
(32)

Determine whether the sequence defined by an=n256n2+1a _ { n } = \frac { n ^ { 2 } - 5 } { 6 n ^ { 2 } + 1 } converges or diverges. If it converges find its limit.

(Short Answer)
4.9/5
(42)

Use series to evaluate the limit correct to three decimal places. limx07xtan17xx3\lim _ { x \rightarrow 0 } \frac { 7 x - \tan ^ { - 1 } 7 x } { x ^ { 3 } } Select the correct answer.

(Short Answer)
4.8/5
(31)

Given the series m=13m4m(3m+5)\sum _ { m = 1 } ^ { \infty } \frac { 3 m } { 4 ^ { m } ( 3 m + 5 ) } estimate the error in using the partial sum s8s _ { 8 } by comparison with the series m914m\sum _ { m - 9 } ^ { \infty } \frac { 1 } { 4 ^ { m } } .

(Short Answer)
4.9/5
(33)

Find the value of the limit for the sequence given. {1917(7n+1)(7n)2}\left\{ \frac { 1 \cdot 9 \cdot 17 \cdots ( 7 n + 1 ) } { ( 7 n ) ^ { 2 } } \right\}

(Multiple Choice)
4.8/5
(32)
Showing 141 - 159 of 159
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)