Exam 15: Multiple Integrals

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Evaluate the iterated integral. 13y312xydxdy\int _ { 1 } ^ { 3 } \int _ { y } ^ { 3 } 12 x y d x d y

(Multiple Choice)
5.0/5
(43)

Use cylindrical coordinates to evaluate Tx2+y2dV\iiint _ { T } \sqrt { x ^ { 2 } + y ^ { 2 } } d V , where TT is the solid bounded by the cylinder x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 and the planes z=4z = 4 and z=8z = 8 .

(Multiple Choice)
4.8/5
(35)

Use cylindrical or spherical coordinates, whichever seems more appropriate, to evaluate EzdV\iiint _ { E } z d V where EE lies above the paraboloid z=x2+y2z = x ^ { 2 } + y ^ { 2 } and below the plane z=16z = 16 .

(Multiple Choice)
4.8/5
(27)

Find the area of the surface. The part of the surface z=25x2y2z = 25 - x ^ { 2 } - y ^ { 2 } that lies above the xyx y -plane.

(Multiple Choice)
4.9/5
(46)

Find the center of mass of the lamina that occupies the region DD and has the given density function, if DD is bounded by the parabola y=1x2y = 1 - x ^ { 2 } and the xx -axis. ρ(x,y)=6y\rho ( x , y ) = 6 y

(Short Answer)
4.8/5
(37)

Evaluate the integral by making an appropriate change of variables. Round your answer to two decimal places. z2x3y5x+2ydA\iint _ { z } \frac { 2 x - 3 y } { 5 x + 2 y } d A RR is the parallelogram bounded by the lines 2x3y=5,2x3y=2,5x+2y=5,5x+2y=32 x - 3 y = - 5,2 x - 3 y = - 2,5 x + 2 y = - 5,5 x + 2 y = - 3 \text {. }

(Short Answer)
4.8/5
(38)

 Identify the surface with equation r2+z2=49\text { Identify the surface with equation } r ^ { 2 } + z ^ { 2 } = 49 \text {. }

(Essay)
4.8/5
(23)

A swimming pool is circular with a 20ft20 - \mathrm { ft } diameter. The depth is constant along east-west lines and increases linearly from 3ft3 \mathrm { ft } at the south end to 9ft9 \mathrm { ft } at the north end. Find the volume of water in the pool.

(Multiple Choice)
4.7/5
(36)

Find the mass and the center of mass of the lamina occupying the region RR , where RR is the region bounded by the graphs of y=sin3x,y=0,x=0y = \sin 3 x , y = 0 , x = 0 , and x=π3x = \frac { \pi } { 3 } , and having the mass density ρ(x,y)=4y\rho ( x , y ) = 4 y

(Short Answer)
4.9/5
(31)

Find the center of mass of a lamina in the shape of an isosceles right triangle with equal sides of length a=15a = 15 if the density at any point is proportional to the square of the distance from the vertex opposite the hypotenuse. Assume the vertex opposite the hypotenuse is located at (0,0)( 0,0 ) , and that the sides are along the positive axes.

(Short Answer)
4.9/5
(40)

Calculate the iterated integral. 0x0101y24ysinxdzdydx\int _ { 0 } ^ { x } \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 - y ^ { 2 } } } 4 y \sin x d z d y d x

(Short Answer)
4.8/5
(31)

Calculate the iterated integral. 0x0101y24ysinxdzdydx\int _ { 0 } ^ { x } \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 - y ^ { 2 } } } 4 y \sin x d z d y d x

(Multiple Choice)
4.8/5
(30)

Calculate the iterated integral. 11012yexydxdy\int _ { - 1 } ^ { 1 } \int _ { 0 } ^ { 1 } 2 y e ^ { x y } d x d y

(Short Answer)
4.9/5
(41)

 Use a double integral to find the area of the region R where R is bounded by the circle r=8sinθ\text { Use a double integral to find the area of the region } R \text { where } R \text { is bounded by the circle } r = 8 \sin \theta \text {. }

(Short Answer)
4.9/5
(28)

Use spherical coordinates. Evaluate B(x2+y2+z2)2dV\iiint _ { B } \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { 2 } d V , where BB is the ball with center the origin and radius 5 .

(Multiple Choice)
4.7/5
(34)

Find the center of mass of a lamina in the shape of an isosceles right triangle with equal sides of length a=25a = 25 if the density at any point is proportional to the square of the distance from the vertex opposite the hypotenuse. Assume the vertex opposite the hypotenuse is located at (0,0)( 0,0 ) , and that the sides are along the positive axes.

(Multiple Choice)
4.8/5
(41)

Use a triple integral to find the volume of the solid bounded by x=y2x = y ^ { 2 } and the planes z=0z = 0 and x+z=3x + z = 3 .

(Multiple Choice)
4.9/5
(36)

Use the Midpoint Rule with four squares of equal size to estimate the double integral. Rcos(x4+y4)dA,R={(x,y)0x0.5,0y0.5}\iint _ { R } \cos \left( x ^ { 4 } + y ^ { 4 } \right) d A , R = \{ ( x , y ) \mid 0 \leq x \leq 0.5,0 \leq y \leq 0.5 \}

(Multiple Choice)
4.9/5
(43)

Find the area of the part of hyperbolic paraboloid z=y2x2z = y ^ { 2 } - x ^ { 2 } that lies between the cylinders x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 and x2+y2=9x ^ { 2 } + y ^ { 2 } = 9 .

(Short Answer)
4.9/5
(32)

 Find the area of the part of the sphere x2+y2+z2=36z that lies inside the paraboloid z=x2+y2\text { Find the area of the part of the sphere } x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 36 z \text { that lies inside the paraboloid } z = x ^ { 2 } + y ^ { 2 } \text {. }

(Short Answer)
4.7/5
(33)
Showing 21 - 40 of 159
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)