Exam 15: Multiple Integrals

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Sketch the solid bounded by the graphs of the equations z=x2+y2z = x ^ { 2 } + y ^ { 2 } and z=50x2y2z = 50 - x ^ { 2 } - y ^ { 2 } , and then use a triple integral to find the volume of the solid.

(Essay)
4.7/5
(35)

Use a triple integral to find the volume of the solid bounded by x=y2x = y ^ { 2 } and the planes z=0z = 0 and x+z=3x + z = 3 .

(Multiple Choice)
4.7/5
(36)

Use cylindrical coordinates to evaluate Tx2+y2dV\iiint _ { T } \sqrt { x ^ { 2 } + y ^ { 2 } } d V , where TT is the solid bounded by the cylinder x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 and the planes z=1z = 1 and z=5z = 5 .

(Multiple Choice)
4.9/5
(33)

Find the area of the surface. The part of the surface z=36x2y2z = 36 - x ^ { 2 } - y ^ { 2 } that lies above the xyx y -plane.

(Short Answer)
4.9/5
(35)

Use polar coordinates to find the volume of the solid inside the cylinder x2+y2=16x ^ { 2 } + y ^ { 2 } = 16 and the ellipsoid 2x2+2y2+z2=642 x ^ { 2 } + 2 y ^ { 2 } + z ^ { 2 } = 64 .

(Multiple Choice)
4.9/5
(35)

 Evaluate the double integral R(1+5x+8y)dA, where R={(x,y)0y1,yx4y}\text { Evaluate the double integral } \iint _ { R } ( 1 + 5 x + 8 y ) d A \text {, where } R = \{ ( x , y ) \mid 0 \leq y \leq 1 , y \leq x \leq 4 y \} \text {. }

(Short Answer)
4.8/5
(31)

Evaluate the iterated integral. Select the correct answer. 13y310xydxdy\int _ { 1 } ^ { 3 } \int _ { y } ^ { 3 } 10 x y d x d y

(Multiple Choice)
4.8/5
(37)

Use the given transformation to evaluate the integral. R(x+y)dA\iint _ { R } ( x + y ) d A , where RR is the square with vertices (0,0),(4,6),(6,4),(10,2)( 0,0 ) , ( 4,6 ) , ( 6 , - 4 ) , ( 10,2 ) and x=4u+6v,y=6u4vx = 4 u + 6 v , y = 6 u - 4 v

(Short Answer)
4.8/5
(37)

Estimate the volume of the solid that lies above the square R=[0,4]×[0,4]R = [ 0,4 ] \times [ 0,4 ] and below the elliptic paraboloid f(x,y)=68x2y2f ( x , y ) = 68 - x ^ { 2 } - y ^ { 2 } . Divide RR into four equal squares and use the Midpoint rule.

(Short Answer)
4.7/5
(35)

Use cylindrical coordinates to evaluate the triple integral EydV\iiint _ { E } y d V where EE is the solid that lies between the cylinders x2+y2=3x ^ { 2 } + y ^ { 2 } = 3 and x2+y2=7x ^ { 2 } + y ^ { 2 } = 7 above the xyx y -plane and below the plane z=x+4z = x + 4 .

(Short Answer)
4.8/5
(33)

 Use polar coordinates to find the volume of the solid bounded by the paraboloid z=76x26y2\text { Use polar coordinates to find the volume of the solid bounded by the paraboloid } z = 7 - 6 x ^ { 2 } - 6 y ^ { 2 }

(Short Answer)
4.7/5
(33)

Use cylindrical coordinates to evaluate the triple integral EydV\iiint _ { E } y d V where EE is the solid that lies between the cylinders x2+y2=3x ^ { 2 } + y ^ { 2 } = 3 and x2+y2=7x ^ { 2 } + y ^ { 2 } = 7 above the xyx y -plane and below the plane z=x+4z = x + 4 .

(Multiple Choice)
4.9/5
(32)

Calculate the iterated integral. 0ln40ln53e5xydxdy\int _ { 0 } ^ { \ln 4 } \int _ { 0 } ^ { \ln 5 } 3 e ^ { 5 x - y } d x d y

(Short Answer)
4.9/5
(37)

Calculate the iterated integral. 1403(3+4xy)dxdy\int _ { 1 } ^ { 4 } \int _ { 0 } ^ { 3 } ( 3 + 4 x y ) d x d y

(Short Answer)
4.9/5
(33)

Use a computer algebra system to find the moment of inertia I0I _ { 0 } of the lamina that occupies the region DD and has the density function ρ(x,y)=3xy\rho ( x , y ) = 3 x y , if D={(x,y)0xπ,0ysin(x)}D = \{ ( x , y ) \mid 0 \leq x \leq \pi , 0 \leq y \leq \sin ( x ) \} .

(Short Answer)
4.8/5
(42)

Use polar coordinates to find the volume of the solid under the paraboloid z=x2+y2z = x ^ { 2 } + y ^ { 2 } and above the disk x2+y29x ^ { 2 } + y ^ { 2 } \leq 9 .

(Multiple Choice)
4.7/5
(30)

Evaluate the double integral by first identifying it as the volume of a solid. Select the correct answer. R(152x)dA,R={(x,y)3x6,4y7}\iint _ { R } ( 15 - 2 x ) d A , R = \{ ( x , y ) \mid 3 \leq x \leq 6,4 \leq y \leq 7 \}

(Multiple Choice)
4.9/5
(34)

Find the mass of the lamina that occupies the region DD and has the given density function, if DD is bounded by the parabola x=y2x = y ^ { 2 } and the line y=x2y = x - 2 . ρ(x,y)=5\rho ( x , y ) = 5 Select the correct answer.

(Multiple Choice)
4.9/5
(36)

 Use polar coordinates to find the volume of the sphere of radius 3. Round to two decimal places. \text { Use polar coordinates to find the volume of the sphere of radius } 3 \text {. Round to two decimal places. }

(Short Answer)
4.7/5
(33)

Use the given transformation to evaluate the integral. RxydA\iint _ { R } x y d A , where RR is the region in the first quadrant bounded by the lines y=x,y=3xy = x , y = 3 x and the hyperbolas xy=2,xy=4;x=uv,y=vx y = 2 , x y = 4 ; x = \frac { u } { v } , y = v .

(Short Answer)
4.9/5
(38)
Showing 101 - 120 of 159
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)