Exam 15: Multiple Integrals

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the volume of the solid bounded in the first octanat bounded by the cylinder z=9y2z = 9 - y ^ { 2 } and the planes x=1x = 1 .

(Short Answer)
4.7/5
(40)

Evaluate Tf(x,y,z)dV\iiint _ { T } f ( x , y , z ) d V where f(x,y,z)=7yf ( x , y , z ) = 7 y and TT is the region bounded by the paraboloid y=x2+z2y = x ^ { 2 } + z ^ { 2 } and the plane y=1y = 1 .

(Short Answer)
4.8/5
(34)

Evaluate the iterated integral. 13y310xydxdy\int _ { 1 } ^ { 3 } \int _ { y } ^ { 3 } 10 x y d x d y

(Multiple Choice)
4.7/5
(36)

Find the area of the part of hyperbolic paraboloid z=y2x2z = y ^ { 2 } - x ^ { 2 } that lies between the cylinders x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 and x2+y2=9x ^ { 2 } + y ^ { 2 } = 9 .

(Short Answer)
4.9/5
(45)

Find the mass of the lamina that occupies the region DD and has the given density function, if DD is bounded by the parabola x=y2x = y ^ { 2 } and the line y=x2y = x - 2 . ρ(x,y)=3\rho ( x , y ) = 3

(Short Answer)
4.9/5
(36)

Calculate the iterated integral. 010y5cos(y2)dxdy\int _ { 0 } ^ { 1 } \int _ { 0 } ^ { y } 5 \cos \left( y ^ { 2 } \right) d x d y

(Short Answer)
5.0/5
(28)

For which of the following regions would you use rectangular coordinates?

(Multiple Choice)
4.9/5
(39)

 Find the area of the surface. The part of the sphere x2+y2+z2=64 that lies above the plane z=1\text { Find the area of the surface. The part of the sphere } x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 64 \text { that lies above the plane } z = 1 \text {. }

(Short Answer)
4.8/5
(36)

Find the area of the part of the sphere x2+y2+z2=36zx ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 36 z that lies inside the paraboloid z=x2+y2z = x ^ { 2 } + y ^ { 2 } . Select the correct answer.

(Multiple Choice)
4.9/5
(37)

Calculate the double integral. R(9x2y315x4)dA,R={(x,y)0x1,0y4}\iint _ { R } \left( 9 x ^ { 2 } y ^ { 3 } - 15 x ^ { 4 } \right) d A , R = \{ ( x , y ) \mid 0 \leq x \leq 1,0 \leq y \leq 4 \}

(Short Answer)
4.8/5
(37)

 Find the area of the surface. The part of the sphere x2+y2+z2=64 that lies above the plane z=1\text { Find the area of the surface. The part of the sphere } x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 64 \text { that lies above the plane } z = 1 \text {. }

(Short Answer)
4.8/5
(40)

An electric charge is spread over a rectangular region R={(x,y)0x3,0y4}R = \{ ( x , y ) \mid 0 \leq x \leq 3,0 \leq y \leq 4 \} . Find the total charge on RR if the charge density at a point (x,y)( x , y ) in RR (measured in coulombs per square meter )) is σ(x,y)=x2+4y3\sigma ( x , y ) = x ^ { 2 } + 4 y ^ { 3 } . Select the correct answer.

(Multiple Choice)
4.8/5
(32)

Calculate the iterated integral. 11015yexydxdy\int _ { - 1 } ^ { 1 } \int _ { 0 } ^ { 1 } 5 y e ^ { x y } d x d y

(Short Answer)
4.9/5
(39)

Use cylindrical or spherical coordinates, whichever seems more appropriate, to evaluate EzdV\iiint _ { E } z d V where EE lies above the paraboloid z=x2+y2z = x ^ { 2 } + y ^ { 2 } and below the plane z=25z = 25 .

(Short Answer)
4.7/5
(24)

An electric charge is spread over a rectangular region R={(x,y)0x3,0y2}R = \{ ( x , y ) \mid 0 \leq x \leq 3,0 \leq y \leq 2 \} . Find the total charge on RR if the charge density at a point (x,y)( x , y ) in RR (measured in coulombs per square meter) is σ(x,y)=4x2+y3\sigma ( x , y ) = 4 x ^ { 2 } + y ^ { 3 } .

(Multiple Choice)
4.9/5
(30)

Sketch the solid bounded by the graphs of the equations z=x2+y2z = x ^ { 2 } + y ^ { 2 } and z=8x2y2z = 8 - x ^ { 2 } - y ^ { 2 } , and then use a triple integral to find the volume of the solid.

(Essay)
4.7/5
(36)

Use a triple integral to find the volume of the solid bounded by x=y2x = y ^ { 2 } and the planes z=0z = 0 and x+z=3x + z = 3 . Select the correct answer.

(Multiple Choice)
4.9/5
(32)

Find the center of mass of the lamina that occupies the region DD and has the given density function, if DD is bounded by the parabola y=1x2y = 1 - x ^ { 2 } and the xx -axis. ρ(x,y)=4y\rho ( x , y ) = 4 y

(Multiple Choice)
4.8/5
(33)

Evaluate the iterated integral. Select the correct answer. 13y312xydxdy\int _ { 1 } ^ { 3 } \int _ { y } ^ { 3 } 12 x y d x d y

(Multiple Choice)
4.8/5
(30)

 Evaluate D4x2y2dA where D is the figure bounded by y=1,y=2,x=0 and x=y\text { Evaluate } \iint _ { D } 4 x ^ { 2 } y ^ { 2 } d A \text { where } D \text { is the figure bounded by } y = 1 , y = 2 , x = 0 \text { and } x = y \text {. }

(Short Answer)
4.8/5
(33)
Showing 81 - 100 of 159
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)