Exam 15: Multiple Integrals

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

 Find the volume under z=4x5+4y5 and above the region bounded by y=x2 and x=y2\text { Find the volume under } z = 4 x ^ { 5 } + 4 y ^ { 5 } \text { and above the region bounded by } y = x ^ { 2 } \text { and } x = y ^ { 2 } \text {. }

(Short Answer)
4.9/5
(39)

Calculate the double integral. Round your answer to two decimal places. R4+x21+y2dA,R={(x,y)0x6,0y4}\iint _ { R } \frac { 4 + x ^ { 2 } } { 1 + y ^ { 2 } } d A , R = \{ ( x , y ) \mid 0 \leq x \leq 6,0 \leq y \leq 4 \}

(Short Answer)
4.8/5
(28)

Find the Jacobian of the transformation. x=7αsinβ,y=6αcosβx = 7 \alpha \sin \beta , y = 6 \alpha \cos \beta

(Short Answer)
4.8/5
(41)

Find the mass of the lamina that occupies the region DD and has the given density function. Round your answer to two decimal places. R={(x,y)1x3,1y4}ρ(x,y)=5y2R = \{ ( x , y ) \mid 1 \leq x \leq 3,1 \leq y \leq 4 \} \rho ( x , y ) = 5 y ^ { 2 }

(Short Answer)
4.7/5
(40)

Find the mass and the center of mass of the lamina occupying the region RR , where RR is the region bounded by the graphs of y=sin6x,y=0,x=0y = \sin 6 x , y = 0 , x = 0 , and x=π6x = \frac { \pi } { 6 } , and having the mass density ρ(x,y)=4y\rho ( x , y ) = 4 y .

(Short Answer)
4.8/5
(33)

Evaluate the double integral R3x2dA\iint _ { R } 3 x ^ { 2 } d A , where RR is the region bounded by the graphs of y=(x1)2y = ( x - 1 ) ^ { 2 } and y=x+3y = - x + 3

(Short Answer)
4.7/5
(34)

Evaluate the double integral by first identifying it as the volume of a solid. R(152x)dA,R={(x,y)3x7,3y5}\iint _ { R } ( 15 - 2 x ) d A , R = \{ ( x , y ) \mid 3 \leq x \leq 7,3 \leq y \leq 5 \}

(Multiple Choice)
4.8/5
(32)

Find the center of mass of the lamina that occupies the region DD and has the given density function, if DD is bounded by the parabola y=1x2y = 1 - x ^ { 2 } and the xx -axis. ρ(x,y)=4y\rho ( x , y ) = 4 y

(Short Answer)
4.8/5
(44)

Use polar coordinates to find the volume of the solid under the paraboloid z=x2+y2z = x ^ { 2 } + y ^ { 2 } and above the disk x2+y225x ^ { 2 } + y ^ { 2 } \leq 25 .

(Multiple Choice)
4.9/5
(40)

 Use spherical coordinates to evaluate Bx2+y2+z2dV, where B is the ball x2+y2+z26\text { Use spherical coordinates to evaluate } \iiint _ { B } \sqrt { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } d V \text {, where } B \text { is the ball } x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \leq 6 \text {. }

(Short Answer)
4.7/5
(40)

Calculate the double integral. R(9x2y315x4)dA,R={(x,y)0x1,0y4}\iint _ { R } \left( 9 x ^ { 2 } y ^ { 3 } - 15 x ^ { 4 } \right) d A , R = \{ ( x , y ) \mid 0 \leq x \leq 1,0 \leq y \leq 4 \}

(Multiple Choice)
4.7/5
(39)

Calculate the iterated integral. 11015yexydxdy\int _ { - 1 } ^ { 1 } \int _ { 0 } ^ { 1 } 5 y e ^ { x y } d x d y

(Multiple Choice)
4.8/5
(41)

Find the volume of the solid bounded by the surface z=5+(x4)2+2yz = 5 + ( x - 4 ) ^ { 2 } + 2 y and the planes x=3,y=4x = 3 , y = 4 and coordinate planes.

(Multiple Choice)
4.8/5
(32)

Evaluate the triple integral. Round your answer to one decimal place. B4xydV\iiint _ { B } 4 x y d V EE lies under the plane z=5+x+yz = 5 + x + y and above the region in the xyx y -plane bounded by the curves y=x,y=0y = \sqrt { x } , y = 0 , and x=4x = 4 .

(Short Answer)
4.9/5
(33)

Find the area of the part of the sphere x2+y2+z2=36zx ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 36 z that lies inside the paraboloid z=x2+y2z = x ^ { 2 } + y ^ { 2 } . Select the correct answer.

(Multiple Choice)
4.8/5
(29)

Use spherical coordinates to find the moment of inertia of the solid homogeneous hemisphere of radius 5 and density 1 about a diameter of its base. Select the correct answer.

(Multiple Choice)
4.8/5
(31)

Find the volume of the solid bounded by the surface z=5+(x4)2+2yz = 5 + ( x - 4 ) ^ { 2 } + 2 y and the planes x=3,y=4x = 3 , y = 4 and coordinate planes.

(Short Answer)
4.9/5
(31)

Determine whether to use polar coordinates or rectangular coordinates to evaluate the integral Rf(x,y)dA\iint _ { R } f ( x , y ) d A , where ff is a continuous function. Then write an expression for the (iterated) integral.  Determine whether to use polar coordinates or rectangular coordinates to evaluate the integral  \iint _ { R } f ( x , y ) d A , where  f  is a continuous function. Then write an expression for the (iterated) integral.

(Short Answer)
4.7/5
(28)

Use cylindrical coordinates to evaluate 2204x2016x2y2zdzdydx\int _ { - 2 } ^ { 2 } \int _ { 0 } ^ { \sqrt { 4 - x ^ { 2 } } } \int _ { 0 } ^ { \sqrt { 16 - x ^ { 2 } - y ^ { 2 } } } z d z d y d x . Select the correct answer.

(Multiple Choice)
4.9/5
(38)

Determine whether to use polar coordinates or rectangular coordinates to evaluate the integral Rf(x,y)dA\iint _ { R } f ( x , y ) d A , where ff is a continuous function. Then write an expression for the (iterated) integral.  Determine whether to use polar coordinates or rectangular coordinates to evaluate the integral  \iint _ { R } f ( x , y ) d A , where  f  is a continuous function. Then write an expression for the (iterated) integral.

(Short Answer)
4.9/5
(35)
Showing 121 - 140 of 159
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)