Exam 15: Multiple Integrals

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Evaluate the integral by changing to polar coordinates. Dex2y2dA\iint _ { D } e ^ { - x ^ { 2 } - y ^ { 2 } } d A DD is the region bounded by the semicircle x=9y2x = \sqrt { 9 - y ^ { 2 } } and the yy -axis.

(Short Answer)
4.8/5
(23)

Use a triple integral to find the volume of the solid bounded by x=y2x = y ^ { 2 } and the planes z=0z = 0 and x+z=3x + z = 3 . Select the correct answer.

(Multiple Choice)
4.9/5
(34)

Find the center of mass of the lamina of the region shown if the density of the circular lamina is four times that of the rectangular lamina. Find the center of mass of the lamina of the region shown if the density of the circular lamina is four times that of the rectangular lamina.

(Short Answer)
4.9/5
(29)

Use a computer algebra system to find the moment of inertia I0I _ { 0 } of the lamina that occupies the region DD and has the density function ρ(x,y)=3xy\rho ( x , y ) = 3 x y , if D={(x,y)0xπ,0ysin(x)}D = \{ ( x , y ) \mid 0 \leq x \leq \pi , 0 \leq y \leq \sin ( x ) \} .

(Multiple Choice)
4.9/5
(27)

The sketch of the solid is given below. Given a=5a = 5 , write the inequalities that describe it. Select the correct answer.  The sketch of the solid is given below. Given  a = 5 , write the inequalities that describe it. Select the correct answer.

(Multiple Choice)
4.9/5
(34)

Find the center of mass of the system comprising masses mkm _ { k } located at the points PkP _ { k } in a coordinate plane. Assume that mass is measured in grams and distance is measured in centimeters. =4,=3,=1 (3,-3),(5,-1),(2,-5)

(Short Answer)
4.8/5
(33)

Find the area of the surface. Round your answer to three decimal places. z=23(x3/2+y3/2),0x3,0y3z = \frac { 2 } { 3 } \left( x ^ { 3 / 2 } + y ^ { 3 / 2 } \right) , 0 \leq x \leq 3,0 \leq y \leq 3

(Short Answer)
4.9/5
(31)

Use spherical coordinate to find the volume above the cone z2=x2+y2z ^ { 2 } = x ^ { 2 } + y ^ { 2 } and inside sphere x2+y2+z2=2azx ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 2 a z .

(Short Answer)
4.8/5
(37)

Calculate the iterated integral. 0x0101y24ysinxdzdydx\int _ { 0 } ^ { x } \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 - y ^ { 2 } } } 4 y \sin x d z d y d x

(Multiple Choice)
4.8/5
(27)

Calculate the iterated integral. 0x0101y24ysinxdzdydx\int _ { 0 } ^ { x } \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 - y ^ { 2 } } } 4 y \sin x d z d y d x

(Short Answer)
4.8/5
(32)

 Sketch the solid whose volume is given by the iterated integral 0202x02xyf(x,y,z)dzdydx\text { Sketch the solid whose volume is given by the iterated integral } \int _ { 0 } ^ { 2 } \int _ { 0 } ^ { 2 - x } \int _ { 0 } ^ { 2 - x - y } f ( x , y , z ) d z d y d x \text {. }

(Essay)
4.7/5
(35)

Calculate the double integral. R(6x2y310x4)dA,R={(x,y)0x1,0y4}\iint _ { R } \left( 6 x ^ { 2 } y ^ { 3 } - 10 x ^ { 4 } \right) d A , R = \{ ( x , y ) \mid 0 \leq x \leq 1,0 \leq y \leq 4 \}

(Multiple Choice)
4.8/5
(35)

Find the volume of the solid bounded by the surface z=5+(x4)2+2yz = 5 + ( x - 4 ) ^ { 2 } + 2 y and the planes x=3,y=4x = 3 , y = 4 and coordinate planes. Select the correct answer.

(Multiple Choice)
4.9/5
(38)

Use spherical coordinate to find the volume above the cone z2=x2+y2z ^ { 2 } = x ^ { 2 } + y ^ { 2 } and inside sphere x2+y2+z2=2azx ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 2 a z .

(Short Answer)
4.9/5
(42)

Evaluate the integral Rx2x2+y2dA\iint _ { R } \frac { x ^ { 2 } } { x ^ { 2 } + y ^ { 2 } } d A , where RR is the annular region bounded by the circles x2+y2=9x ^ { 2 } + y ^ { 2 } = 9 and x2+y2=16x ^ { 2 } + y ^ { 2 } = 16 , by changing to polar coordinates.

(Short Answer)
4.8/5
(36)

 The sketch of the solid is given below. Given a=4, write the inequalities that describe it. \text { The sketch of the solid is given below. Given } a = 4 \text {, write the inequalities that describe it. } \text { The sketch of the solid is given below. Given } a = 4 \text {, write the inequalities that describe it. }

(Short Answer)
4.9/5
(31)

Use cylindrical coordinates to evaluate the triple integral EydV\iiint _ { E } y d V where EE is the solid that lies between the cylinders x2+y2=3x ^ { 2 } + y ^ { 2 } = 3 and x2+y2=7x ^ { 2 } + y ^ { 2 } = 7 above the xyx y -plane and below the plane z=x+4z = x + 4 .

(Multiple Choice)
4.9/5
(33)

Find the mass of the solid SS bounded by the paraboloid z=6x2+6y2z = 6 x ^ { 2 } + 6 y ^ { 2 } and the plane z=5z = 5 if SS has constant density 3 . Select the correct answer.

(Multiple Choice)
4.9/5
(37)

Find the Jacobian of the transformation. x=7αsinβ,y=6αcosβx = 7 \alpha \sin \beta , y = 6 \alpha \cos \beta

(Short Answer)
4.8/5
(33)

Find the mass and the center of mass of the lamina occupying the region RR , where RR is the triangular region with vertices (0,0),(5,2)( 0,0 ) , ( 5,2 ) , and (10,0)( 10,0 ) , and having the mass density ρ(x,y)=x\rho ( x , y ) = x .

(Multiple Choice)
4.8/5
(33)
Showing 61 - 80 of 159
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)