Exam 16: Series and Taylor Polynomials Web

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Write the given series in summation notation. 24+816+3264+1282 - 4 + 8 - 16 + 32 - 64 + 128

(Multiple Choice)
4.8/5
(38)

Test the series n=1n(1.3)n\sum _ { n = 1 } ^ { \infty } n ( 1.3 ) ^ { n } for convergence or divergence using any appropriate test.

(Multiple Choice)
4.9/5
(36)

Write an expression for the apparent nth term of the sequence. (Assume that n begins with 1.) 521,522,523,524,525,- 5 - \frac { 2 } { 1 } , - 5 - \frac { 2 } { 2 } , - 5 - \frac { 2 } { 3 } , - 5 - \frac { 2 } { 4 } , - 5 - \frac { 2 } { 5 } ,

(Multiple Choice)
4.9/5
(31)

Complete two iterations of Newton´s Method for the function f(x)=x210f ( x ) = x ^ { 2 } - 10 using the initial guess 3.1.

(Multiple Choice)
4.9/5
(43)

Find the indicated term of the sequence. =(-1(3n-1) =\square

(Multiple Choice)
4.9/5
(33)

The annual profit ana _ { n } (in millions of dollars) for a certain company from 2000 to 2005 can be approximated by the model an=302.58e0.196n,a _ { n } = 302.58 e ^ { 0.196 n }, n=0,1,K,5n = 0,1 , K , 5 where nn represents the year, with n=0n = 0 corresponding to 2000. Use the formula for the sum of a finite geometric sequence to approximate the total profit earned during this six-year period. Round to the nearest ten-thousand dollars.

(Multiple Choice)
4.8/5
(36)

Find the sum of the infinite geometric series. n=04(12)n\sum _ { n = 0 } ^ { \infty } 4 \left( - \frac { 1 } { 2 } \right) ^ { n }

(Multiple Choice)
4.8/5
(41)
Showing 121 - 127 of 127
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)