Exam 16: Series and Taylor Polynomials Web

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Simplify the factorial expression. 14!12!\frac { 14 ! } { 12 ! }

(Multiple Choice)
4.8/5
(41)

Find the sum of the finite geometric sequence. n=173(25)n1\sum _ { n = 1 } ^ { 7 } 3 \left( \frac { 2 } { 5 } \right) ^ { n - 1 }

(Multiple Choice)
4.8/5
(39)

Write the rational number 0.810 . \overline { 81 } as the quotient of two integers in simplest form.

(Multiple Choice)
4.8/5
(25)

Write the given series in summation notation. 15+140+1135+1320+1625+11080\frac { 1 } { 5 } + \frac { 1 } { 40 } + \frac { 1 } { 135 } + \frac { 1 } { 320 } + \frac { 1 } { 625 } + \frac { 1 } { 1080 }

(Multiple Choice)
4.8/5
(35)

A heavy object (with negligible air resistance) is dropped from a plane. During the first second of fall, the object falls 17.4 meters; during the second second, it falls 52.2 meters; during the third second, it falls 87.0 meters; and during the fourth second, it falls 121.8 meters. If this pattern continues, how many meters will the object fall in 10 seconds?

(Multiple Choice)
4.9/5
(35)

Use the Ratio Test to determine the convergence or divergence of the series. n=1n(85)n\sum _ { n = 1 } ^ { \infty } n \left( \frac { 8 } { 5 } \right) ^ { n }

(Multiple Choice)
4.8/5
(27)

Determine the convergence or divergence of the series. n=0(310)n\sum _ { n = 0 } ^ { \infty } \left( \frac { 3 } { 10 } \right) ^ { n }

(Multiple Choice)
4.9/5
(38)

Write the first five terms of the power series n=1(1)n(x8)n4n\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n } ( x - 8 ) ^ { n } } { 4 ^ { n } } .

(Multiple Choice)
4.8/5
(39)

A ball is dropped from a height of 14 feet, and on each rebound it rises to 25\frac { 2 } { 5 } its preceding height. Write an expression for the height of the nth rebound.

(Multiple Choice)
4.8/5
(41)

Determine the convergence or divergence of the series n=16n900\sum _ { n = 1 } ^ { \infty } \frac { 6 ^ { n } } { 900 } . Use a symbolic algebra utility to verify your result.

(Multiple Choice)
4.8/5
(43)

Find the sum of the infinite geometric series. n=1(13)n\sum _ { n = 1 } ^ { \infty } \left( - \frac { 1 } { 3 } \right) ^ { n }

(Multiple Choice)
5.0/5
(35)

Express the value of the given repeating decimal as a fraction. [Hint: Write as an infinite series.] 0.480 . \overline { 48 }

(Multiple Choice)
4.7/5
(40)

Determine whether the sequence is arithmetic. If so, find the common difference. 2, 1, 0, -1, -2

(Multiple Choice)
4.7/5
(42)

Find the sum of the convergent series. n=09(89)n\sum _ { n = 0 } ^ { \infty } 9 \left( \frac { 8 } { 9 } \right) ^ { n }

(Multiple Choice)
4.8/5
(32)

Write the first five terms of the sequence. an = 25n7n22 - \frac { 5 } { n } - \frac { 7 } { n ^ { 2 } }

(Multiple Choice)
4.7/5
(43)

Determine the convergence or divergence of the following series. n=12n2\sum _ { n = 1 } ^ { \infty } \frac { 2 } { n ^ { 2 } }

(Multiple Choice)
4.8/5
(26)

Find a formula for an for the arithmetic sequence. a3=8,a7=36a _ { 3 } = 8 , a _ { 7 } = 36

(Multiple Choice)
4.9/5
(34)

Find the nth term of the geometric sequence. 2,52,2.58,K- 2 , - \frac { 5 } { 2 } , - \frac { 2.5 } { 8 } , \mathbf { K }

(Multiple Choice)
4.8/5
(40)

Logs are stacked so that there are 17 logs in the bottom row, 16 logs in the second row from the bottom, and so on, decreasing by 1 log each row. How many logs are there in the first five rows from the bottom?

(Multiple Choice)
4.9/5
(39)

Write the first five terms of the geometric sequence. a1=1,r=16a _ { 1 } = - 1 , r = - \frac { 1 } { 6 }

(Multiple Choice)
4.8/5
(42)
Showing 81 - 100 of 127
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)