Exam 16: Series and Taylor Polynomials Web

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the sum of the finite geometric series. n=143(3)n\sum _ { n = 1 } ^ { 4 } 3 ( - 3 ) ^ { n }

(Multiple Choice)
4.8/5
(48)

Find the fifth term of the sequence that has the given nth term. an=(n+2)!n!a _ { n } = \frac { ( n + 2 ) ! } { n ! }

(Multiple Choice)
4.8/5
(43)

Use Newton's Method to approximate the zero(s) of the function f(x)=x5+4x+2f ( x ) = x ^ { 5 } + 4 x + 2 accurate to three decimal places.

(Multiple Choice)
4.8/5
(37)

Match the geometric sequence with its graph from the choices below. an=12(43)n1a _ { n } = 12 \left( - \frac { 4 } { 3 } \right) ^ { n - 1 }

(Multiple Choice)
4.8/5
(39)

Write an expression for the nth term of the sequence. 9,94,99,916, L9 , - \frac { 9 } { 4 } , \frac { 9 } { 9 } , - \frac { 9 } { 16 } , \mathrm {~L}

(Multiple Choice)
4.7/5
(32)

Find the partial sum. n=1140(4n+1)\sum _ { n = 1 } ^ { 140 } ( - 4 n + 1 )

(Multiple Choice)
4.7/5
(40)

Find the limit of the following sequence. an=(n2)!n!a _ { n } = \frac { ( n - 2 ) ! } { n ! }

(Multiple Choice)
5.0/5
(39)

Determine the convergence or divergence of the series. n=14nn3\sum _ { n = 1 } ^ { \infty } \frac { 4 } { n \cdot \sqrt [ 3 ] { n } }

(Multiple Choice)
4.9/5
(37)

Find the radius of convergence of the series n=0(x6)n\sum _ { n = 0 } ^ { \infty } \left( \frac { x } { 6 } \right) ^ { n } .

(Multiple Choice)
4.9/5
(40)

Find a formula for ana _ { n } for the arithmetic sequence below. 2,1,0,1,2,K- 2 , - 1,0,1,2 , \mathbf { K }

(Multiple Choice)
5.0/5
(40)

The seating section in a theater has 29 seats in the first row, 34 seats in the second row, and so on, increasing by 5 seats each row for a total of 15 rows. How many seats are in the thirteenth row?

(Multiple Choice)
5.0/5
(41)

Use a symbolic differentiation utility to find the fourth-degree Taylor polynomials (centred at zero) . f(x)=1x+13f ( x ) = \frac { 1 } { \sqrt [ 3 ] { x + 1 } }

(Multiple Choice)
4.9/5
(31)

Use the sixth-degree Taylor polynomial centered at zero for the function f(x)=11+x2f ( x ) = \frac { 1 } { \sqrt { 1 + x ^ { 2 } } } to approximate the integral 02/311+x2\int _ { 0 } ^ { 2 / 3 } \frac { 1 } { \sqrt { 1 + x ^ { 2 } } } . Round your answer to nearest ten thousandth.

(Multiple Choice)
4.9/5
(39)

Use summation notation to write the sum. 48+16K+644 - 8 + 16 - K + 64

(Multiple Choice)
4.9/5
(44)

Write the first five terms of the sequence. (Assume that n begins with 1.) an=3n+7a _ { n } = 3 n + 7

(Multiple Choice)
4.7/5
(44)

Give an example of a sequence that converges to 14\frac { 1 } { 4 } .

(Multiple Choice)
4.9/5
(38)

Find the indicated nth partial sum of the arithmetic sequence. 3.4, 6.2, 9, 11.8, ..., n = 10

(Multiple Choice)
4.9/5
(38)

A Taylor polynomial approximation of f(x)=ex22f ( x ) = e ^ { - \frac { x ^ { 2 } } { 2 } } is given below. Use a graphing utility to graph both functions. y=12x2+1y = - \frac { 1 } { 2 } x ^ { 2 } + 1

(Multiple Choice)
4.7/5
(39)

Find the radius of convergence of f(x)f ^ { \prime } ( x ) where f(x)=n=0(x6)nf ( x ) = \sum _ { n = 0 } ^ { \infty } \left( \frac { x } { 6 } \right) ^ { n } .

(Multiple Choice)
4.8/5
(40)

Approximate the sum of the convergent series n=11n2\sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ^ { 2 } } using four terms. Estimate the maximum error of your approximation. Round your answers to four decimal places.

(Multiple Choice)
4.8/5
(42)
Showing 41 - 60 of 127
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)