Exam 14: Functions of Several Variables

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Use a double integral to find the area of the region bounded by the graphs of y=x2+2x+1y = x ^ { 2 } + 2 x + 1 and y=(x+1)y = ( x + 1 ) .

(Multiple Choice)
4.8/5
(31)

If f(x,y)=ln(xy4+7),f ( x , y ) = \ln \left( x y ^ { 4 } + 7 \right), find fx and fy\frac { \partial f } { \partial x } \text { and } \frac { \partial f } { \partial y }

(Multiple Choice)
4.9/5
(36)

Use Lagrange multipliers to find the given extremum. In each case, assume that x,y,x , y, and zz are positive. Maximize f(x,y,z)=x+y+zf ( x , y , z ) = x + y + z Constraints x2+y2+z2=1x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 1

(Multiple Choice)
4.9/5
(33)

Use a double integral to find the volume of the solid bounded by the graphs of the equations z=x4,z=0,x=0,x=3,y=0,y=3z = x ^ { 4 } , z = 0 , x = 0 , x = 3 , y = 0 , y = 3 .

(Multiple Choice)
4.8/5
(29)

For f(x,y)f ( x , y ) , find all values of x and y such that fx(x,y)=0f _ { x } ( x , y ) = 0 and fy(x,y)=0f _ { y } ( x , y ) = 0 simultaneously. f(x,y)=16x34xy+16y3f ( x , y ) = 16 x ^ { 3 } - 4 x y + 16 y ^ { 3 }

(Multiple Choice)
4.7/5
(35)

The population density (in people per square mile) for a coastal town can be modeled by f(x,y)=110,000(2+x+y)3f ( x , y ) = \frac { 110,000 } { ( 2 + x + y ) ^ { 3 } } where x and y are measured in miles. What is the population inside the rectangular area defined by the vertices (0,0),(2,0),(0,2),( 0,0 ) , ( 2,0 ) , ( 0,2 ), and (2,2)( 2,2 ) ? Round to the nearest integer.

(Multiple Choice)
4.8/5
(28)

Use Lagrange multipliers to find the given extremum. Assume that xx and yy are positive. Minimize f(x,y)=exyf ( x , y ) = e ^ { xy } Constraint x2+y28=0x ^ { 2 } + y ^ { 2 } - 8 = 0

(Multiple Choice)
4.9/5
(34)

The Cobb-Douglas production function for an automobile manufacturer is f(x,y)=100x0.6y0.4f ( x , y ) = 100 x ^ { 0.6 } y ^ { 0.4 } where x is the number of units of labor and y is the number of units of capital. Estimate the average production level if the number of units of labor x varies between 250 and 300 and the number of units of capital y varies between 250 and 300.

(Multiple Choice)
4.8/5
(26)

Find the standard equation of the sphere whose center is (6,5,7)( - 6 , - 5,7 ) and whose radius is 4.

(Multiple Choice)
4.7/5
(29)

Describe the trace of the surface given by the function below in the xy-plane. x2yz2=0x ^ { 2 } - y - z ^ { 2 } = 0

(Multiple Choice)
4.9/5
(39)

Describe the level curves for the function f(x,y)=x2+y2f ( x , y ) = x ^ { 2 } + y ^ { 2 } for the c-values given by c=0,2,4,6,8c = 0,2,4,6,8 .  Describe the level curves for the function  f ( x , y ) = x ^ { 2 } + y ^ { 2 }  for the c-values given by  c = 0,2,4,6,8  .

(Multiple Choice)
4.9/5
(36)

Evaluate the following integral. 3xx34yxdy\int _ { 3 x } ^ { x ^ { 3 } } \frac { 4 y } { x } d y

(Multiple Choice)
4.9/5
(36)

Evaluate the double integral 02y2y(1+x2+y2)dxdy\int _ { 0 } ^ { 2 } \int _ { y } ^ { 2 y } \left( 1 + x ^ { 2 } + y ^ { 2 } \right) d x d y . Round your answer to two decimal places, where applicable.

(Multiple Choice)
4.7/5
(39)

Use Lagrange multipliers to maximize the function f(x,y)=16x2y2f ( x , y ) = \sqrt { 16 - x ^ { 2 } - y ^ { 2 } } subject to the following constraint: x+y4=0x + y - 4 = 0 Assume that x, y, and z are positive.

(Multiple Choice)
4.8/5
(28)

Use a symbolic integration utility to evaluate the double integral. 120xexydydx\int _ { 1 } ^ { 2 } \int _ { 0 } ^ { x } e ^ { x y } d y d x

(Multiple Choice)
4.8/5
(43)

Use Lagrange multipliers to find the minimum distance from the circle x2+(y4)2=49x ^ { 2 } + ( y - 4 ) ^ { 2 } = 49 to the point (10,5)( - 10 , - 5 ) Round your answer to the nearest tenth.

(Multiple Choice)
4.8/5
(34)

Find the critical points of the function f(x,y,z)=3((x+8)(y7)(z3))2f ( x , y , z ) = - 3 - ( ( x + 8 ) ( y - 7 ) ( z - 3 ) ) ^ { 2 } , and, from the form of the function, determine whether a relative maximum or a relative minimum occurs at each point.

(Multiple Choice)
4.9/5
(32)

Find the domain and range of the function. f(x,y)=exyf ( x , y ) = e ^ { \frac { x } { y } }

(Multiple Choice)
4.9/5
(37)

Find the center and radius of the sphere whose equation is 2x2+2y2+2z28x+12y12z+43=02 x ^ { 2 } + 2 y ^ { 2 } + 2 z ^ { 2 } - 8 x + 12 y - 12 z + 43 = 0 . Round your answer to two decimal places, where applicable.

(Multiple Choice)
4.7/5
(27)

A manufacturer has an order for 1100 units of fine paper that can be produced at two locations. Let x1x _ { 1 } and x2x _ { 2 } be the numbers of units produced at the two plants. Find the number of units that should be produced at each plant to minimize the cost if the cost function is given by C=0.2x12+25x1+0.05x22+12x2C = 0.2 x _ { 1 } ^ { 2 } + 25 x _ { 1 } + 0.05 x _ { 2 } ^ { 2 } + 12 x _ { 2 } .

(Multiple Choice)
4.8/5
(38)
Showing 21 - 40 of 92
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)