Exam 6: The Integral

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

The solution to the differential equation dydx=x+2sinx\frac { d y } { d x } = x + 2 \sin x satisfying the boundary condition y=4y = 4 when x=0x = 0 is

(Multiple Choice)
4.8/5
(47)

In a regular partition of the interval [2, 8] into 10 subintervals, then the length of each subintervals Δx is ​

(Multiple Choice)
4.8/5
(33)

The solution to the differential equation dydx=3y\frac { d y } { d x } = - 3 y satisfying the boundary condition y = 3 when x = 0 is

(Multiple Choice)
4.9/5
(27)

Let A denote the area enclosed by the graph f(x)=(x1)2,f ( x ) = ( x - 1 ) ^ { 2 }, the x-axis, and the lines x = 2 and x = 9. Graphing the region and using plane geometry, we can find that A is

(Multiple Choice)
4.8/5
(35)

The f definite integral 44(sinx+x3)dx\int _ { - 4 } ^ { 4 } \left( \sin x + x ^ { 3 } \right) d x is

(Multiple Choice)
4.8/5
(32)

In a regular partition of the interval [-4, 12] into 8 subintervals, then the length of each subinterval Δx is ​

(Multiple Choice)
4.7/5
(39)

Suppose S4 is the upper sum of the area enclosed by the graph (x)=1x( x ) = \frac { 1 } { x } , the x-axis, and the lines x = 1 and x = 4 by partitioning [1, 4] into three subintervals [1, 2], [2, 3], and [3, 4]. Then S4 is

(Multiple Choice)
4.8/5
(39)

The indefinite integral sin3xcosxdx\int \sin ^ { 3 } x \cos x d x is

(Multiple Choice)
4.7/5
(38)

The antiderivative 4sec2xdx\int 4 \sec ^ { 2 } x d x is

(Multiple Choice)
4.9/5
(34)

The antiderivative x232xdx\int \frac { x ^ { 2 } - 3 } { 2 x } d x is

(Multiple Choice)
4.7/5
(43)

The bounds m and M used in the Bounds on an Integral Theorem for 1elnxdx\int _ { 1 } ^ { e } \ln x d x are

(Multiple Choice)
4.8/5
(38)

Let 11f(x)dx=4\int _ { - 1 } ^ { 1 } f ( x ) d x = 4 , and 14f(x)dx=3,\int _ { 1 } ^ { 4 } f ( x ) d x = 3, then 11g(x)dx=6,\int _ { - 1 } ^ { 1 } g ( x ) d x = - 6, is

(Multiple Choice)
4.7/5
(36)

The antiderivative (cosxsinx)dx\int ( \cos x - \sin x ) d x is

(Multiple Choice)
4.9/5
(36)

The antiderivative x56dx\int \sqrt [ 6 ] { x ^ { 5 } } d x is

(Multiple Choice)
4.7/5
(44)

Let A denote the area enclosed by the graph f(x)=1x2,f ( x ) = \sqrt { 1 - x ^ { 2 } }, the x-axis, and the lines x=0x = 0 and x=1x = 1 . Graphing the region and using plane geometry, we can find that A is

(Multiple Choice)
4.9/5
(42)

If 23f(x)dx=32,\int _ { - 2 } ^ { 3 } f ( x ) d x = \frac { 3 } { 2 }, then 328f(x)dx\int _ { - 3 } ^ { 2 } 8 f ( x ) d x is

(Multiple Choice)
4.8/5
(37)

If 215f(x)dx=5,\int _ { 2 } ^ { 1 } 5 f ( x ) d x = 5, then 122f(x)dx\int _ { 1 } ^ { 2 } 2 f ( x ) d x is

(Multiple Choice)
4.9/5
(37)

Compute this definite integral using geometric methods: 749(x+4)2dx\int _ { - 7 } ^ { - 4 } \sqrt { 9 - ( x + 4 ) ^ { 2 } } d x .

(Multiple Choice)
4.7/5
(31)

The indefinite integral 4sinx1+cosx3dx\int 4 \sin x \sqrt [ 3 ] { 1 + \cos x } d x is

(Multiple Choice)
4.8/5
(37)

The value of the definite integral e1eeπdx\int _ { e ^ { - 1 } } ^ { e } e ^ { \pi } d x is

(Multiple Choice)
4.8/5
(34)
Showing 81 - 100 of 129
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)