Exam 6: The Integral

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

The indefinite integral sec2(6x)dx\int \sec ^ { 2 } ( 6 x ) d x is

(Multiple Choice)
4.8/5
(31)

Suppose S4 is the upper sum of the area enclosed by the graph f(x)=x2+2,f ( x ) = x ^ { 2 } + 2, the x-axis, and the lines x = 0 and x = 2 by partitioning [0, 2] into four subintervals [0, 1/2], [1/2, 1], [1, 3/2], and [3/2, 2]. Then S4 is

(Multiple Choice)
4.8/5
(36)

Let A denote the area enclosed by the graph (x)=1x+1( x ) = \frac { 1 } { x + 1 } , the x-axis, and the lines x = 1 and x = 5. Graphing the region and using plane geometry, we can find that A is

(Multiple Choice)
4.8/5
(32)

The indefinite integral (5x+8)100\int ( 5 x + 8 ) ^ { 100 } is

(Multiple Choice)
4.9/5
(35)

The definite integral 141x(1+x)2dx\int _ { 1 } ^ { 4 } \frac { 1 } { \sqrt { x } ( 1 + \sqrt { x } ) ^ { 2 } } d x is

(Multiple Choice)
4.7/5
(23)

The definite integral 012x2x3+1dx\int _ { 0 } ^ { 1 } 2 x ^ { 2 } \sqrt { x ^ { 3 } + 1 } d x is

(Multiple Choice)
4.8/5
(33)

The value of the definite integral 22lnedx\int _ { - 2 } ^ { 2 } \ln e d x is

(Multiple Choice)
4.7/5
(39)

The antiderivative (1+cot2x)dx\int \left( 1 + \cot ^ { 2 } x \right) d x is

(Multiple Choice)
4.8/5
(41)

Let A denote the area enclosed by the graph f(x)=12x3,f ( x ) = \frac { 1 } { 2 } x ^ { 3 }, the x-axis, and the lines x = 0 and x = 2. Graphing the region and using plane geometry, we can find that A is

(Multiple Choice)
4.8/5
(35)

If the half-life of a radioactive isotope is 5000 years, then its decay constant is

(Multiple Choice)
4.9/5
(47)

The indefinite integral sin(x2)dx\int \sin \left( \frac { x } { 2 } \right) d x is

(Multiple Choice)
4.8/5
(38)

If F(x)=x3(12t)dtF ( x ) = \int _ { x } ^ { - 3 } ( 1 - 2 t ) d t , what is F(0)?

(Multiple Choice)
4.7/5
(34)

The derivative ddx[x205tdt]\frac { d } { d x } \left[ \int _ { x ^ { 2 } } ^ { 0 } 5 ^ { t } d t \right] is

(Multiple Choice)
4.8/5
(40)

The solution to the differential equation dydx=ex2y\frac { d y } { d x } = \frac { e ^ { x } } { 2 y } satisfying the boundary condition y=5y = 5 when x=0x = 0 is

(Multiple Choice)
4.9/5
(38)

The value of the definite integral ππe3e32dx\int _ { - \pi } ^ { \pi } \frac { e ^ { 3 } - e ^ { - 3 } } { 2 } d x is

(Multiple Choice)
4.8/5
(33)

The value of the definite integral 461edx\int _ { - 4 } ^ { 6 } \frac { 1 } { e } d x is

(Multiple Choice)
4.9/5
(42)

By part 2 of the Fundamental Theorem of Calculus, π4π3secxtanxdx\int _ { \frac { \pi } { 4 } } ^ { \frac { \pi } { 3 } } \sec x \tan x d x is

(Multiple Choice)
4.8/5
(40)

If 01f(x)dx=π,\int _ { 0 } ^ { 1 } f ( x ) d x = \pi, then π210f(x)dx\frac { \pi ^ { 2 } } { \int _ { 1 } ^ { 0 } f ( x ) d x } is

(Multiple Choice)
4.9/5
(33)

By part 2 of the Fundamental Theorem of Calculus, 0π2(2x+cosx)dx\int _ { 0 } ^ { \frac { \pi } { 2 } } ( 2 x + \cos x ) d x is

(Multiple Choice)
4.9/5
(36)

Let A denote the area enclosed by the graph f(x)=x,f ( x ) = | x |, the x-axis, and the lines x=2x = - 2 and x=0x = 0 . Graphing the region and using plane geometry, we can find that A is

(Multiple Choice)
4.7/5
(35)
Showing 21 - 40 of 129
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)