Exam 6: The Integral

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

The bounds m and M used in the Bounds on an Integral Theorem for π4π3sin2xdx\int _ { \frac { \pi } { 4 } } ^ { \frac { \pi } { 3 } } \sin ^ { 2 } x d x are

(Multiple Choice)
4.9/5
(37)

Suppose S4 is the lower sum of the area enclosed by the graph f(x)=x2+x,f ( x ) = x ^ { 2 } + x, the x-axis, and the lines x = 0 and x = 10 by partitioning [0, 2] into four subintervals [0, 1/2], [1/2, 1], [1, 3/2], and [3/2, 2]. Then S4 is

(Multiple Choice)
5.0/5
(40)

The antiderivative tan2xdx\int \tan ^ { 2 } x d x is

(Multiple Choice)
5.0/5
(37)

Let 11f(x)dx=4\int _ { - 1 } ^ { 1 } f ( x ) d x = 4 , and 14f(x)dx=3,\int _ { 1 } ^ { 4 } f ( x ) d x = 3, then 11g(x)dx=6,\int _ { - 1 } ^ { 1 } g ( x ) d x = - 6, is

(Multiple Choice)
4.8/5
(33)

Let A denote the area enclosed by the graph f(x)=3+4x2,f ( x ) = 3 + \sqrt { 4 - x ^ { 2 } }, the lines y = 3, x = 0, and x = 2. Graphing the region and using plane geometry, we can find that A is

(Multiple Choice)
4.8/5
(39)

The indefinite integral xx+4dx\int \frac { x } { \sqrt { x + 4 } } d x is

(Multiple Choice)
4.9/5
(40)

Let 610f(x)dx=15\int _ { 6 } ^ { 10 } f ( x ) d x = 15 and 46f(x)dx=6\int _ { 4 } ^ { 6 } f ( x ) d x = - 6 Then 104f(x)dx\int _ { 10 } ^ { 4 } f ( x ) d x is

(Multiple Choice)
4.9/5
(36)

The definite integral 11(3x32x)dx\int _ { - 1 } ^ { 1 } \left( 3 x ^ { 3 } - 2 x \right) d x is

(Multiple Choice)
4.8/5
(34)

The antiderivative (x4)2dx\int ( x - 4 ) ^ { 2 } d x is

(Multiple Choice)
4.9/5
(33)

Let A denote the area enclosed by the graph f(x)=3x2,f ( x ) = 3 x ^ { 2 }, the x-axis, and the lines x=1x = 1 and x=3x = 3 . By part 2 of the Fundamental Theorem of Calculus, A is

(Multiple Choice)
4.8/5
(38)

Let ƒ be an integrable function on [a,b], and sns _ { n } and sns _ { n } be the lower and upper sum of a partition of [a,b], respectively. Which of the following is always true?

(Multiple Choice)
4.7/5
(41)

Let f(x)=x4f ( x ) = | x - 4 | If c(0,2)c \in ( 0,2 ) such that 02x4dx2=f(c),\frac { \int _ { 0 } ^ { 2 } | x - 4 | d x } { 2 } = f ( c ), then c is

(Multiple Choice)
4.7/5
(27)

The indefinite integral exex+7dx\int \frac { e ^ { x } } { e ^ { x } + 7 } d x is

(Multiple Choice)
5.0/5
(30)

Suppose S4 is the lower sum of the area enclosed by the graph f(x)=2x2,f ( x ) = 2 x ^ { 2 }, the x-axis, and the lines x = 0 and x = 4 by partitioning [0, 4] into four subintervals [0, 1], [1, 2], [2, 3], and [3, 4]. Then S4 is

(Multiple Choice)
4.8/5
(35)

Let f(x)=3x2+1f ( x ) = 3 x ^ { 2 } + 1 If c(0,2)c \in ( 0,2 ) such that 02(3x2+1)dx2=f(c),\frac { \int _ { 0 } ^ { 2 } \left( 3 x ^ { 2 } + 1 \right) d x } { 2 } = f ( c ), then c is

(Multiple Choice)
4.7/5
(32)

The average value of f(x)=cosxf ( x ) = \cos x on [0,π6]\left[ 0 , \frac { \pi } { 6 } \right] is

(Multiple Choice)
4.7/5
(34)

Let ƒ be an integrable function on [a,b]. Which of the following is always true?

(Multiple Choice)
4.7/5
(41)

Let ƒ be an integrable function on [a,b]. Which of the following is always true?

(Multiple Choice)
4.9/5
(38)

The derivative ddx[x1sin1tdt]\frac { d } { d x } \left[ \int _ { x } ^ { 1 } \sin ^ { - 1 } t d t \right] is

(Multiple Choice)
4.9/5
(39)

The indefinite integral 5x2x383dx\int 5 x ^ { 2 } \sqrt [ 3 ] { x ^ { 3 } - 8 } d x is

(Multiple Choice)
4.7/5
(46)
Showing 61 - 80 of 129
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)