Exam 6: The Integral

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Let A denote the area enclosed by the graph f(x)=4x,f ( x ) = 4 - | x |, the x-axis, and the lines x = -2 and x = 0. Graphing the region and using plane geometry, we can find that A is

(Multiple Choice)
4.8/5
(32)

Let ƒ be an integrable function on [a,b]. Which of the following is not always true?

(Multiple Choice)
4.9/5
(33)

Suppose S6 is the lower sum of the area enclosed by the graph f(x)=10x2,f ( x ) = 10 - x ^ { 2 }, the x-axis, and the lines x = 0 and x = 3 by partitioning [0, 3] into six subintervals [0, 0.5], [0.5, 1], [1, 1.5], [1.5, 2], [2, 2.5], and [2.5, 3]. Then S6 is

(Multiple Choice)
4.7/5
(39)

Suppose the instantaneous velocity V(t)V ( t ) of a moving particle is V(t)=t26t+3V ( t ) = t ^ { 2 } - 6 t + 3 meters per second. Which expression below represents the net displacement of the particle between 2 seconds and 5 seconds?

(Multiple Choice)
4.9/5
(28)

If 11f(x)dx=6,\int _ { - 1 } ^ { 1 } f ( x ) d x = 6, then 012f(x)dx\int _ { 0 } ^ { 1 } 2 f ( x ) d x is

(Multiple Choice)
4.9/5
(34)

Let A denote the area enclosed by the graph f(x)=10x,f ( x ) = 10 - x, the x-axis, and the lines x=3x = 3 and x=5x = 5 . Graphing the region and using plane geometry, we can find that A is

(Multiple Choice)
4.8/5
(41)

A sufficient condition for a function ƒ on [a,b] to be integrable is ​

(Multiple Choice)
4.9/5
(34)

Let 11f(x)dx=4\int _ { - 1 } ^ { 1 } f ( x ) d x = 4 , and 14f(x)dx=3,\int _ { 1 } ^ { 4 } f ( x ) d x = 3, then 11g(x)dx=6,\int _ { - 1 } ^ { 1 } g ( x ) d x = - 6, is

(Multiple Choice)
4.8/5
(39)

Let 24f(x)dx=12\int _ { - 2 } ^ { 4 } f ( x ) d x = 12 and 20f(x)dx=7\int _ { - 2 } ^ { 0 } f ( x ) d x = 7 Then 04f(x)dx\int _ { 0 } ^ { 4 } f ( x ) d x is

(Multiple Choice)
4.9/5
(37)

Let 15f(x)dx=4\int _ { 1 } ^ { 5 } f ( x ) d x = 4 and 12f(x)dx=2\int _ { 1 } ^ { 2 } f ( x ) d x = 2 Then 25f(x)dx\int _ { 2 } ^ { 5 } f ( x ) d x is

(Multiple Choice)
4.7/5
(39)

The indefinite integral dx3x+7\int \frac { d x } { \sqrt { 3 x + 7 } } is

(Multiple Choice)
4.9/5
(42)

The derivative ddx[2xtt2+1dt]\frac { d } { d x } \left[ \int _ { 2 } ^ { x } \frac { \sqrt { t } } { t ^ { 2 } + 1 } d t \right] is

(Multiple Choice)
4.8/5
(37)

By part 2 of the Fundamental Theorem of Calculus, 01211x2dx\int _ { 0 } ^ { \frac { 1 } { 2 } } \frac { 1 } { \sqrt { 1 - x ^ { 2 } } } d x is

(Multiple Choice)
4.8/5
(30)

Let 11f(x)dx=4\int _ { - 1 } ^ { 1 } f ( x ) d x = 4 , and 14f(x)dx=3,\int _ { 1 } ^ { 4 } f ( x ) d x = 3, then 11g(x)dx=6,\int _ { - 1 } ^ { 1 } g ( x ) d x = - 6, is

(Multiple Choice)
4.8/5
(33)

If f is an even function, 50f(x)dx=6,\int _ { - 5 } ^ { 0 } f ( x ) d x = 6, and 02f(x)dx=2,\int _ { 0 } ^ { 2 } f ( x ) d x = - 2, then 25f(x)dx\int _ { 2 } ^ { 5 } f ( x ) d x ?

(Multiple Choice)
4.9/5
(31)

The indefinite integral sinxcosxdx\int \frac { \sin x } { \cos x } d x is

(Multiple Choice)
4.8/5
(34)

The derivative ddx[1xlntdt]\frac { d } { d x } \left[ \int _ { 1 } ^ { x } \ln t d t \right] is

(Multiple Choice)
4.9/5
(31)

Suppose S5 is the lower sum of the area enclosed by the graph f(x)=x2+x,f ( x ) = x ^ { 2 } + x, the x-axis, and the lines x = 0 and x = 10 by partitioning [0, 10] into five subintervals [0, 2], [2, 4], [4, 6], [6, 8], and [8, 10]. Then S5 is

(Multiple Choice)
4.8/5
(28)

Let f(x)=3x21f ( x ) = \frac { 3 } { x ^ { 2 } } - 1 If c(1,3)c \in ( 1,3 ) such that 133x21dx2=f(c),\frac { \int _ { 1 } ^ { 3 } \frac { 3 } { x ^ { 2 } } - 1 d x } { 2 } = f ( c ), then c is

(Multiple Choice)
4.8/5
(48)

Suppose S5 is the upper sum of the area enclosed by the graph f(x)=x2+x,f ( x ) = x ^ { 2 } + x, the x-axis, and the lines x = 0 and x = 10 by partitioning [0, 10] into five subintervals [0, 2], [2, 4], [4, 6], [6, 8], and [8, 10]. Then S5 is

(Multiple Choice)
4.9/5
(32)
Showing 101 - 120 of 129
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)