Exam 12: Vector Functions

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

In F(t)=GmMr(t)r(t)3\mathbf { F } ( t ) = - \frac { \operatorname { GmM } \mathbf { r } ( t ) } { \| \mathbf { r } ( t ) \| ^ { 3 } } , m represents

(Multiple Choice)
5.0/5
(26)

The solution r(t)\mathbf { r } ( t ) to the differential equation r(t)=6t2ietj+etk\mathbf { r } ^ { \prime } ( t ) = 6 t ^ { 2 } \mathbf { i } - e ^ { t } \mathbf { j } + e ^ { - t } \mathbf { k } with the condition r(0)=3i+j2k\mathbf { r } ( 0 ) = 3 \mathbf { i } + \mathbf { j } - 2 \mathbf { k } is

(Multiple Choice)
4.8/5
(39)

The speed of a particle moving along the curve r(t)=2ticos(3t)j+sin(3t)k\mathbf { r } ( t ) = 2 t \mathbf { i } - \cos ( 3 t ) \mathbf { j } + \sin ( 3 t ) \mathbf { k } is

(Multiple Choice)
4.7/5
(31)

The radius of curvature of r(t)=eti+etj+k\mathbf { r } ( t ) = e ^ { t } \mathbf { i } + e ^ { - t } \mathbf { j } + \mathbf { k } at the point corresponding to t = 0 is

(Multiple Choice)
4.8/5
(34)

Let a(t)=9.5k\mathbf { a } ( t ) = - 9.5 \mathbf { k } be the acceleration of an object with velocity v(t)\mathbf { v } ( t ) . If v(0)=2i+3j\mathbf { v } ( 0 ) = 2 \mathbf { i } + 3 \mathbf { j } then v(t)\mathbf { v } ( t ) is

(Multiple Choice)
4.8/5
(40)

Let r(t)=4ticostj+sintk\mathbf { r } ( t ) = 4 t \mathbf { i } - \cos t \mathbf { j } + \sin t \mathbf { k } Then r(π6)\mathbf { r } ^ { \prime } \left( \frac { \pi } { 6 } \right) is

(Multiple Choice)
4.9/5
(30)

Let y=2x2x3y = 2 x ^ { 2 } - x ^ { 3 } . Then the curvature K at (-1, 3) is

(Multiple Choice)
4.8/5
(34)

Let r(t)=cos(2t)isin(2t)j+5tk\mathbf { r } ( t ) = \cos ( 2 t ) \mathbf { i } - \sin ( 2 t ) \mathbf { j } + 5 t \mathbf { k } Then r(π4)\mathbf { r } ^ { \prime } \left( \frac { \pi } { 4 } \right) is

(Multiple Choice)
4.9/5
(35)

The normal component aN(t)a _ { \mathrm { N } } ( t ) of the acceleration of a particle moving along the curve r(t)=sin(2t)icos(2t)j+2tk\mathbf { r } ( t ) = \sin ( 2 t ) \mathbf { i } - \cos ( 2 t ) \mathbf { j } + 2 t \mathbf { k } is

(Multiple Choice)
4.8/5
(32)

The magnitude of the acceleration of a particle moving along the curve r(t)=t2itjt2k\mathbf { r } ( t ) = t ^ { 2 } \mathbf { i } - t \mathbf { j } - t ^ { 2 } \mathbf { k } is

(Multiple Choice)
4.7/5
(30)

Let y=2x2y = 2 x ^ { 2 } . Then the curvature K at (1, 2) is

(Multiple Choice)
4.8/5
(38)

Let r(t)=(23t)i+4tj(1t)k\mathbf { r } ( t ) = ( 2 - 3 t ) \mathbf { i } + 4 t \mathbf { j } - ( 1 - t ) \mathbf { k } Then r(0)\mathbf { r } ^ { \prime } ( 0 ) is

(Multiple Choice)
4.8/5
(37)

Let r(t)=sin(3t)i+cos(3t)jtk\mathbf { r } ( t ) = \sin ( 3 t ) \mathbf { i } + \cos ( 3 t ) \mathbf { j } - t \mathbf { k } Then the unit normal vector n(π6)\mathbf { n } \left( \frac { \pi } { 6 } \right) is

(Multiple Choice)
4.8/5
(36)

Let r(t)=cos(2t)i+sin(2t)j+4tk\mathbf { r } ( t ) = \cos ( 2 t ) \mathbf { i } + \sin ( 2 t ) \mathbf { j } + 4 t \mathbf { k } Then the unit tangent vector T(π4)\mathbf { T } \left( \frac { \pi } { 4 } \right) is

(Multiple Choice)
4.9/5
(34)

Let a(t)=9.5k\mathbf { a } ( t ) = - 9.5 \mathbf { k } be the acceleration of an object with velocity v(t)\mathbf { v } ( t ) . If v(0)=i+2k\mathbf { v } ( 0 ) = \mathbf { i } + 2 \mathbf { k } then v(t)\mathbf { v } ( t ) is

(Multiple Choice)
4.8/5
(32)

Which of the following is Kepler's Second Law of Motion? ​

(Multiple Choice)
4.8/5
(40)

Let r(t)=(23t)i+4tj(1t)k\mathbf { r } ( t ) = ( 2 - 3 t ) \mathbf { i } + 4 t \mathbf { j } - ( 1 - t ) \mathbf { k } Then the curvature K(t) is

(Multiple Choice)
4.8/5
(32)

Let a(t)=9.5k\mathbf { a } ( t ) = - 9.5 \mathbf { k } be the acceleration of an object with velocity v(t)\mathbf { v } ( t ) . If v(0)=2i+3j\mathbf { v } ( 0 ) = 2 \mathbf { i } + 3 \mathbf { j } then the speed v(t)\| \mathbf { v } ( t ) \| is

(Multiple Choice)
4.9/5
(39)

The solution r(t)\mathbf { r } ( t ) to the differential equation r(t)=eti3tj+3t2k\mathbf { r } ^ { \prime } ( t ) = e ^ { t } \mathbf { i } - 3 t \mathbf { j } + 3 t ^ { 2 } \mathbf { k } with the condition r(1)=j+k\mathbf { r } ( 1 ) = \mathbf { j } + \mathbf { k } is

(Multiple Choice)
4.8/5
(40)

According to Kepler's First Law, which of the following is located at a focus of an ellipse? ​

(Multiple Choice)
4.8/5
(35)
Showing 101 - 120 of 120
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)