Exam 12: Vector Functions

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Let r(t)=cos(2t)i+sin(2t)j+3tk\mathbf { r } ( t ) = - \cos ( 2 t ) \mathbf { i } + \sin ( 2 t ) \mathbf { j } + 3 t \mathbf { k } Then the curvature K(t) is

(Multiple Choice)
4.9/5
(30)

The speed of a particle moving along the curve r(t)=t2itjt2k\mathbf { r } ( t ) = t ^ { 2 } \mathbf { i } - t \mathbf { j } - t ^ { 2 } \mathbf { k } is

(Multiple Choice)
4.8/5
(40)

Let a(t)=costi+sintj\mathbf { a } ( t ) = \cos t \mathbf { i } + \sin t \mathbf { j } be the acceleration of an object with velocity v(t)\mathbf { v } ( t ) . If v(0)=i+j\mathbf { v } ( 0 ) = \mathbf { i } + \mathbf { j } then the speed v(t)\| \mathbf { v } ( t ) \| is

(Multiple Choice)
4.9/5
(24)

The normal component aN(t)a _ { \mathrm { N } } ( t ) of the acceleration of a particle moving along the curve r(t)=eti+etj+tk\mathbf { r } ( t ) = e ^ { t } \mathbf { i } + e ^ { - t } \mathbf { j } + t \mathbf { k } is

(Multiple Choice)
4.7/5
(30)

The tangential component aT(t)a _ { \mathrm { T } } ( t ) of the acceleration of a particle moving along the curve r(t)=t2itjt2k\mathbf { r } ( t ) = t ^ { 2 } \mathbf { i } - t \mathbf { j } - t ^ { 2 } \mathbf { k } is

(Multiple Choice)
4.8/5
(36)

Which of the following equation implies that the motion of a planet lies in a plane?

(Multiple Choice)
4.8/5
(35)

The tangential component aT(t)a _ { \mathrm { T } } ( t ) of the acceleration of a particle moving along the curve r(t)=t2i+(2t21)j3t2k\mathbf { r } ( t ) = t ^ { 2 } \mathbf { i } + \left( 2 t ^ { 2 } - 1 \right) \mathbf { j } - 3 t ^ { 2 } \mathbf { k } is

(Multiple Choice)
4.8/5
(37)

The radius of curvature of r(t)=costi+sintj+tk\mathbf { r } ( t ) = \cos t \mathbf { i } + \sin t \mathbf { j } + t \mathbf { k } at the point corresponding to t=π2t = \frac { \pi } { 2 } is

(Multiple Choice)
4.8/5
(29)

Let a(t)=costi+sintj\mathbf { a } ( t ) = \cos t \mathbf { i } + \sin t \mathbf { j } be the acceleration of an object with velocity v(t)\mathbf { v } ( t ) . If v(0)=i+j\mathbf { v } ( 0 ) = - \mathbf { i } + \mathbf { j } then the speed v(t)\| \mathbf { v } ( t ) \| is

(Multiple Choice)
5.0/5
(38)

Let r(t)=sin(2t)i+2tjcos(2t)k\mathbf { r } ( t ) = - \sin ( 2 t ) \mathbf { i } + 2 t \mathbf { j } - \cos ( 2 t ) \mathbf { k } Then the unit normal vector n(π6)\mathbf { n } \left( \frac { \pi } { 6 } \right) is

(Multiple Choice)
4.9/5
(39)

Let r(t)=etietj+3tk\mathbf { r } ( t ) = e ^ { t } \mathbf { i } - e ^ { - t } \mathbf { j } + 3 t \mathbf { k } Then the curvature K(0) is

(Multiple Choice)
4.9/5
(39)

Kepler's Third Law of Planetary Motion states that ​

(Multiple Choice)
4.8/5
(31)

Let r(t)=cos(2t+1)i+t2+1j+t22k\mathbf { r } ( t ) = \cos ( 2 t + 1 ) \mathbf { i } + \sqrt { t ^ { 2 } + 1 } \mathbf { j } + \frac { t ^ { 2 } } { 2 } \mathbf { k } Then r(t)\mathbf { r } ^ { \prime \prime } ( t ) is

(Multiple Choice)
4.8/5
(40)

The magnitude of the acceleration of a particle moving along the curve r(t)=sin(4t)icos(4t)j+7k\mathbf { r } ( t ) = \sin ( 4 t ) \mathbf { i } - \cos ( 4 t ) \mathbf { j } + 7 \mathbf { k } is

(Multiple Choice)
4.8/5
(31)

The speed of a particle moving along the curve r(t)=(t+2)i+2tj+3k\mathbf { r } ( t ) = ( t + 2 ) \mathbf { i } + 2 t \mathbf { j } + 3 \mathbf { k } is

(Multiple Choice)
4.9/5
(31)

Let r(t)=ti+sin(t)jcos(t)k\mathbf { r } ( t ) = - t \mathbf { i } + \sin ( t ) \mathbf { j } - \cos ( t ) \mathbf { k } Then the unit normal vector n(0)\mathbf { n } ( 0 ) is

(Multiple Choice)
4.8/5
(41)

The solution r(t)\mathbf { r } ( t ) to the differential equation r(t)=3costi2sintj+k\mathbf { r } ^ { \prime } ( t ) = 3 \cos t \mathbf { i } - 2 \sin t \mathbf { j } + \mathbf { k } with the condition r(0)=2i+k\mathbf { r } ( 0 ) = 2 \mathbf { i } + \mathbf { k } is

(Multiple Choice)
4.9/5
(35)

Which of the following is Newton's Second Law of Motion?

(Multiple Choice)
4.8/5
(37)

Let r(t)=cos(2t)i+sin(2t)j+3tk\mathbf { r } ( t ) = \cos ( 2 t ) \mathbf { i } + \sin ( 2 t ) \mathbf { j } + 3 t \mathbf { k } Then the unit normal vector n(π4)\mathbf { n } \left( \frac { \pi } { 4 } \right) is

(Multiple Choice)
4.9/5
(36)

The radius of curvature of y = cos x at (?, -1) is

(Multiple Choice)
4.9/5
(39)
Showing 81 - 100 of 120
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)