Exam 12: Vector Functions

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Let v(t)=t2ij+3tk\mathbf { v } ( t ) = t ^ { 2 } \mathbf { i } - \mathbf { j } + 3 t \mathbf { k } and w(t)=2ti+3jtk\mathbf { w } ( t ) = 2 t \mathbf { i } + 3 \mathbf { j } - t \mathbf { k } Then ddt(v(t)×w(t))\frac { d } { d t } ( \mathbf { v } ( t ) \times \mathbf { w } ( t ) ) is

(Multiple Choice)
4.9/5
(24)

Let y=4xx2y = 4 x - x ^ { 2 } . Then the curvature K at (1, 3) is

(Multiple Choice)
4.9/5
(33)

The magnitude of the acceleration of a particle moving along the curve r(t)=(t+2)i+2tj+3k\mathbf { r } ( t ) = ( t + 2 ) \mathbf { i } + 2 t \mathbf { j } + 3 \mathbf { k } is

(Multiple Choice)
4.7/5
(32)

Let r(t)=tisin(t)jcos(t)k\mathbf { r } ( t ) = t \mathbf { i } - \sin ( t ) \mathbf { j } - \cos ( t ) \mathbf { k } Then the curvature K(t) is

(Multiple Choice)
4.8/5
(28)

Let r(t)=6ti+costjsintk\mathbf { r } ( t ) = 6 t \mathbf { i } + \cos t \mathbf { j } - \sin t \mathbf { k } Then the unit tangent vector T(π6)\mathbf { T } \left( \frac { \pi } { 6 } \right) is

(Multiple Choice)
4.9/5
(26)

Let r(t)=sinti+costjetk\mathbf { r } ( t ) = - \sin t \mathbf { i } + \cos t \mathbf { j } - e ^ { - t } \mathbf { k } Then r(t)\mathbf { r } ^ { \prime } ( t ) is

(Multiple Choice)
4.9/5
(33)

Let r(t)=esinti+ecostjsectk\mathbf { r } ( t ) = e ^ { \sin t } \mathbf { i } + e ^ { \cos t } \mathbf { j } - \sec t \mathbf { k } Then r(t)\mathbf { r } ^ { \prime } ( t ) is

(Multiple Choice)
4.9/5
(30)

Which of the following is Newton's Law of Universal Gravitation?

(Multiple Choice)
4.8/5
(37)

Let r(t)=esintiecostj+lntk\mathbf { r } ( t ) = e ^ { \sin t } \mathbf { i } - e ^ { \cos t } \mathbf { j } + \ln t \mathbf { k } Then r(t)\mathbf { r } ^ { \prime \prime } ( t ) is

(Multiple Choice)
4.7/5
(30)

Let v(t)=2i3tj+t2k\mathbf { v } ( t ) = 2 \mathbf { i } - 3 t \mathbf { j } + t ^ { 2 } \mathbf { k } and w(t)=i+3tj+5t2k\mathbf { w } ( t ) = - \mathbf { i } + 3 t \mathbf { j } + 5 t ^ { 2 } \mathbf { k } Then ddt(v(t)×w(t))\frac { d } { d t } ( \mathbf { v } ( t ) \times \mathbf { w } ( t ) ) is

(Multiple Choice)
4.8/5
(30)

Let r(t)=sin(2t)icos(2t)j4tk\mathbf { r } ( t ) = \sin ( 2 t ) \mathbf { i } - \cos ( 2 t ) \mathbf { j } - 4 t \mathbf { k } Then r(π4)\mathbf { r } ^ { \prime } \left( \frac { \pi } { 4 } \right) is

(Multiple Choice)
4.8/5
(42)

Let r(t)=cos(t)isin(t)j+πtk\mathbf { r } ( t ) = \cos ( t ) \mathbf { i } - \sin ( t ) \mathbf { j } + \pi t \mathbf { k } Then the unit normal vector r(t)=cos(t)isin(t)j+πtk\mathbf { r } ( t ) = \cos ( t ) \mathbf { i } - \sin ( t ) \mathbf { j } + \pi t \mathbf { k } is

(Multiple Choice)
4.7/5
(39)

Newton's Second Law Motion states that ​

(Multiple Choice)
4.9/5
(33)

The radius of curvature of r(t)=cos(2t)i+sin(2t)j+tk\mathbf { r } ( t ) = \cos ( 2 t ) \mathbf { i } + \sin ( 2 t ) \mathbf { j } + t \mathbf { k } at the point corresponding to t = 0 is

(Multiple Choice)
4.8/5
(38)

Let r(t)=esinti+costj+ln(5t)k\mathbf { r } ( t ) = e ^ { \sin t } \mathbf { i } + \cos t \mathbf { j } + \ln ( 5 - t ) \mathbf { k } Then r(t)\mathbf { r } ^ { \prime \prime } ( t ) is

(Multiple Choice)
4.9/5
(34)

In F(t)=GmMr(t)r(t)3\mathbf { F } ( t ) = - \frac { \operatorname { GmM } \mathbf { r } ( t ) } { \| \mathbf { r } ( t ) \| ^ { 3 } } , F represents

(Multiple Choice)
4.9/5
(31)

In F(t)=GmMr(t)r(t)3\mathbf { F } ( t ) = - \frac { \operatorname { GmM } \mathbf { r } ( t ) } { \| \mathbf { r } ( t ) \| ^ { 3 } } , r represents

(Multiple Choice)
4.9/5
(35)

Newton's Law of Universal Gravitation states that ​

(Multiple Choice)
4.7/5
(25)

The domain of the vector function v(t)=3t24isin(2t)j+1tk\mathbf { v } ( t ) = \frac { 3 } { \sqrt { t ^ { 2 } - 4 } } \mathbf { i } - \sin ( 2 t ) \mathbf { j } + \frac { 1 } { t } \mathbf { k } is

(Multiple Choice)
4.8/5
(30)

Let v(t)=2i(3t+1)j+4tk\mathbf { v } ( t ) = 2 \mathbf { i } - ( 3 t + 1 ) \mathbf { j } + 4 t \mathbf { k } and w(t)=4ti+5jt2k\mathbf { w } ( t ) = 4 t \mathbf { i } + 5 \mathbf { j } - t ^ { 2 } \mathbf { k } Then ddt(v(t)×w(t))\frac { d } { d t } ( \mathbf { v } ( t ) \times \mathbf { w } ( t ) ) is

(Multiple Choice)
4.9/5
(33)
Showing 61 - 80 of 120
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)