Exam 12: Vector Functions

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

In the discussion of Kepler's Second Law of Planetary Motion, the expression dAdt\frac { d A } { d t } can be expressed as

(Multiple Choice)
4.8/5
(23)

The tangential component aT(t)a _ { \mathrm { T } } ( t ) of the acceleration of a particle moving along the curve r(t)=sin(2t)icos(2t)j+2tk\mathbf { r } ( t ) = \sin ( 2 t ) \mathbf { i } - \cos ( 2 t ) \mathbf { j } + 2 t \mathbf { k } is

(Multiple Choice)
4.8/5
(32)

Let r(t)=sin(2t)icos(2t)j+5tk\mathbf { r } ( t ) = \sin ( 2 t ) \mathbf { i } - \cos ( 2 t ) \mathbf { j } + 5 t \mathbf { k } Then the unit tangent vector T(π4)\mathbf { T } \left( \frac { \pi } { 4 } \right) is

(Multiple Choice)
4.9/5
(26)

Let r(t)=cos(2t)isin(2t)j+6tk\mathbf { r } ( t ) = \cos ( 2 t ) \mathbf { i } - \sin ( 2 t ) \mathbf { j } + 6 t \mathbf { k } Then r(π6)\mathbf { r } ^ { \prime } \left( \frac { \pi } { 6 } \right) is

(Multiple Choice)
4.8/5
(38)

The domain of the vector function v(t)=eti1t2j+8k\mathbf { v } ( t ) = e ^ { t } \mathbf { i } - \sqrt { 1 - t ^ { 2 } } \mathbf { j } + 8 \mathbf { k } is

(Multiple Choice)
4.8/5
(43)

The solution r(t)\mathbf { r } ( t ) to the differential equation r(t)=3t2i1t3j+4k\mathbf { r } ^ { \prime } ( t ) = 3 t ^ { 2 } \mathbf { i } - \frac { 1 } { t - 3 } \mathbf { j } + 4 \mathbf { k } with the condition r(4)=ij+3k\mathbf { r } ( 4 ) = \mathbf { i } - \mathbf { j } + 3 \mathbf { k } is

(Multiple Choice)
5.0/5
(33)

The tangential component aT(t)a _ { \mathrm { T } } ( t ) of the acceleration of a particle moving along the curve r(t)=2tisintj+costk\mathbf { r } ( t ) = 2 t \mathbf { i } - \sin t \mathbf { j } + \cos t \mathbf { k } is

(Multiple Choice)
4.7/5
(42)

The Geocentric Theory of Planetary Motion states that ​

(Multiple Choice)
4.8/5
(30)

The domain of the vector function v(t)=2ti5t2j+log2(t4)k\mathbf { v } ( t ) = 2 ^ { t } \mathbf { i } - 5 t ^ { 2 } \mathbf { j } + \log _ { 2 } ( t - 4 ) \mathbf { k } is

(Multiple Choice)
4.9/5
(37)

Let a(t)=32k\mathbf { a } ( t ) = - 32 \mathbf { k } be the acceleration of an object with velocity v(t)\mathbf { v } ( t ) . If v(0)=0i+0j+0k\mathbf { v } ( 0 ) = 0 \mathbf { i } + 0 \mathbf { j } + 0 \mathbf { k } , then v(t)\mathbf { v } ( t ) is

(Multiple Choice)
4.9/5
(39)

The magnitude of the acceleration of a particle moving along the curve r(t)=2ticos(3t)j+sin(3t)k\mathbf { r } ( t ) = 2 t \mathbf { i } - \cos ( 3 t ) \mathbf { j } + \sin ( 3 t ) \mathbf { k } is

(Multiple Choice)
4.8/5
(29)

Let y=xy = \sqrt { x } . Then the curvature K at (4, 2) is

(Multiple Choice)
4.7/5
(38)

Nicolaus Copernicus's Heliocentric Theory of Planetary Motion states that ​

(Multiple Choice)
4.9/5
(43)

The radius of curvature of y=x32xy = x ^ { 3 } - 2 x at (2, 4) is

(Multiple Choice)
4.9/5
(46)

Let a(t)=32k\mathbf { a } ( t ) = - 32 \mathbf { k } be the acceleration of an object with velocity v(t)\mathbf { v } ( t ) . If v(0)=i+2j+0k\mathbf { v } ( 0 ) = \mathbf { i } + 2 \mathbf { j } + 0 \mathbf { k } then the speed v(t)\| \mathbf { v } ( t ) \| is

(Multiple Choice)
4.8/5
(40)

Let v(t)=5ti2t2jk\mathbf { v } ( t ) = 5 t \mathbf { i } - 2 t ^ { 2 } \mathbf { j } - \mathbf { k } and w(t)=4ti+t2j3k\mathbf { w } ( t ) = - 4 t \mathbf { i } + t ^ { 2 } \mathbf { j } - 3 \mathbf { k } Then ddt(v(t)×w(t))\frac { d } { d t } ( \mathbf { v } ( t ) \times \mathbf { w } ( t ) ) is

(Multiple Choice)
4.8/5
(35)

The fact that r(t)×v(t)\mathbf { r } ( t ) \times \mathbf { v } ( t ) is constant implies that

(Multiple Choice)
4.8/5
(35)

The tangential component aT(t)a _ { \mathrm { T } } ( t ) of the acceleration of a particle moving along the curve r(t)=(t+2)i+2tj+2k\mathbf { r } ( t ) = ( t + 2 ) \mathbf { i } + 2 t \mathbf { j } + 2 \mathbf { k } is

(Multiple Choice)
4.8/5
(38)

The solution r(t)\mathbf { r } ( t ) to the differential equation r(t)=sinti+costj+3k\mathbf { r } ^ { \prime } ( t ) = \sin t \mathbf { i } + \cos t \mathbf { j } + 3 \mathbf { k } with the condition r(0)=i+j\mathbf { r } ( 0 ) = \mathbf { i } + \mathbf { j } is

(Multiple Choice)
4.9/5
(31)

The solution r(t)\mathbf { r } ( t ) to the differential equation r(t)=ti+etj1t2k\mathbf { r } ^ { \prime } ( t ) = t \mathbf { i } + e ^ { - t } \mathbf { j } - \frac { 1 } { t ^ { 2 } } \mathbf { k } with the condition r(1)=ij+3k\mathbf { r } ( 1 ) = \mathbf { i } - \mathbf { j } + 3 \mathbf { k } is

(Multiple Choice)
4.8/5
(31)
Showing 41 - 60 of 120
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)