Exam 4: Definite Integrals

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Given f(x)=sinxf ( x ) = \sin x over the interval [0, 2 π\pi ], find: (a) the signed area, (b) the absolute area, between the graph of f and the x-axis from x = 0 to x = 2 π\pi

(Short Answer)
4.9/5
(32)

Evaluate 149x2dx\int _ { - 1 } ^ { 4 } \left| 9 - x ^ { 2 } \right| d x

(Multiple Choice)
4.9/5
(40)

Find a formula for the sum k=1n(k22k+3)\sum _ { k = 1 } ^ { n } \left( k ^ { 2 } - 2 k + 3 \right) and then use it to calculate the sum for n = 100, n = 500, and n = 1000.

(Essay)
4.9/5
(36)

Find a formula for the sum and then use it to calculate the sum for n = 100, n = 500, and n = 1000. k=1n(2k)\sum _ { k = 1 } ^ { n } ( 2 - k )

(Multiple Choice)
4.8/5
(36)

Write out each sum in expanded form, and then calculate the value of the sum. k=16lnk\sum _ { k = 1 } ^ { 6 } \ln k

(Essay)
4.9/5
(36)

Write the following sum in sigma notation. 18+127+164+1125+1216\frac { 1 } { 8 } + \frac { 1 } { 27 } + \frac { 1 } { 64 } + \frac { 1 } { 125 } + \frac { 1 } { 216 }

(Multiple Choice)
4.8/5
(33)

Find a formula for the sum k=1n(k2+2k+2)n3\sum _ { k = 1 } ^ { n } \frac { \left( k ^ { 2 } + 2 k + 2 \right) } { n ^ { 3 } } and then use it to calculate the sum for n = 100, n = 500, and n = 1000.

(Essay)
4.9/5
(34)

Evaluate 01e3xxe2xe2xdx\int _ { 0 } ^ { 1 } \frac { e ^ { 3 x } - x e ^ { 2 x } } { e ^ { 2 x } } d x

(Multiple Choice)
4.8/5
(30)

Use geometry to find the exact value of 2610dx\int _ { - 2 } ^ { 6 } 10 d x

(Multiple Choice)
4.8/5
(40)

Find 2tan2xdx\int 2 \tan ^ { 2 } x d x

(Multiple Choice)
4.8/5
(40)

Given f(x)=3x2f ( x ) = 3 x ^ { 2 } over the interval [-1, 2], find: (a) the signed area, (b) the absolute area, between the graph of f and the x-axis from x = -1 to x = 2.

(Short Answer)
4.8/5
(44)

Find d2dx2x42lntdt\frac { d ^ { 2 } } { d x ^ { 2 } } \int _ { x ^ { 4 } } ^ { 2 } \ln t d t

(Essay)
4.8/5
(30)

Write out each sum in expanded form, and then calculate the value of the sum. k=27k2\sum _ { k = 2 } ^ { 7 } k ^ { 2 }

(Short Answer)
4.7/5
(39)

Find (x3+2x)2x3dx\int \frac { \left( x ^ { 3 } + 2 x \right) ^ { 2 } } { x ^ { 3 } } d x

(Multiple Choice)
4.8/5
(28)

Use definite integrals and Fundamental Theorem of Calculus to find the exact area of the region between the graphs of f(x)=x+2f ( x ) = x + 2 , g(x)=5xg ( x ) = 5 - x , and the x-axis from x = 0 to x = 6.

(Multiple Choice)
4.8/5
(48)

Evaluate 12(x2+2)2x3dx\int _ { 1 } ^ { 2 } \frac { \left( x ^ { 2 } + 2 \right) ^ { 2 } } { x ^ { 3 } } d x

(Short Answer)
4.7/5
(26)

If 14f(x)dx=3\int _ { - 1 } ^ { 4 } f ( x ) d x = 3 , 34f(x)dx=6\int _ { - 3 } ^ { 4 } f ( x ) d x = 6 , 14g(x)dx=2\int _ { - 1 }^4 g ( x ) d x = - 2 and 46g(x)dx=5\int _ { 4 } ^ { 6 } g ( x ) d x = 5 , find the following, if possible. (a) 31f(x)dx\int _ { - 3 } ^ { - 1 } f ( x ) d x (b) 16(g(x)+3)dx\int _ { - 1 }^6 ( g ( x ) + 3 ) d x (c) 14(2f(x)+x)dx\int _ { - 1 } ^ { 4 } ( 2 f ( x ) + x ) d x

(Short Answer)
4.8/5
(35)

Evaluate 132xdx\int _ { 1 } ^ { 3 } \frac { 2 } { x } d x

(Multiple Choice)
4.9/5
(42)

Find (6x2+52ex)dx\int \left( 6 x ^ { 2 } + 5 - 2 e ^ { x } \right) d x

(Multiple Choice)
4.9/5
(32)

Approximate the area between the graph of f(x)=x2+4xf ( x ) = x ^ { 2 } + 4 x and the x-axis on the interval [2, 4], using a left sum with (a) n = 4, (b) n = 6.

(Short Answer)
4.8/5
(39)
Showing 21 - 40 of 83
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)