Exam 55: Mathematical Induction

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the sum using the formulas for the sums of powers of integers.​ n=116n\sum _ { n = 1 } ^ { 16 } n

(Multiple Choice)
4.9/5
(36)

Determine whether the statement is true or false. ​A sequence with terms has n-1 second differences. ​

(Multiple Choice)
4.9/5
(33)

Find the sum using the formulas for the sums of powers of integers.​ n=12n4\sum _ { n = 1 } ^ { 2 } n ^ { 4 }

(Multiple Choice)
4.8/5
(41)

Write the first six terms of the sequence beginning with the given term.Then calculate the first and second differences of the sequence.State whether the sequence has a linear model,a quadratic model,or neither. ​ A0 = 1 An = an - 1 + n ​

(Multiple Choice)
4.9/5
(28)

Find the sum using the formulas for the sums of powers of integers. n=1129n3n2\sum _ { n = 1 } ^ { 12 } 9 n - 3 n ^ { 2 }

(Multiple Choice)
4.9/5
(31)

Find the sum using the formulas for the sums of powers of integers.​ n=16n2\sum _ { n = 1 } ^ { 6 } n ^ { 2 }

(Multiple Choice)
4.8/5
(38)

Use mathematical induction to solve for all positive integers n.​ 3+8+13+18++(5n2)=?3 + 8 + 13 + 18 + \ldots + ( 5 n - 2 ) = ?

(Multiple Choice)
4.8/5
(30)

The table shows the numbers ana _ { n } (in thousands)of residents from 2002 through 2007. Number of residents, . Year . 2002 646 2003 657 2004 668 2005 679 2006 690 2007 701 Determine whether a linear model can be used to approximate the data. If so,find a model algebraically.Let n represent the year,with n=2n = 2 corresponding to 2002.

(Multiple Choice)
4.8/5
(35)

Find pk+1 for the given pk.? pk=k27(k+2)2p _ { k } = \frac { k ^ { 2 } } { 7 ( k + 2 ) ^ { 2 } } ?

(Multiple Choice)
4.8/5
(38)

Find a formula for the sum of the n terms of the sequence. 12,54,258,12516,\frac { 1 } { 2 } , \frac { 5 } { 4 } , \frac { 25 } { 8 } , \frac { 125 } { 16 } , \ldots

(Multiple Choice)
4.9/5
(30)

Write the first six terms of the sequence beginning with the given term.Then calculate the first and second differences of the sequence.State whether the sequence has a linear model,a quadratic model,or neither.​ =4 = ​

(Multiple Choice)
4.9/5
(37)

Write the first six terms of the sequence beginning with the given term.Then calculate the first and second differences of the sequence.State whether the sequence has a linear model,a quadratic model,or neither. ​ A1 = 2 An = an - 1 + 2 ​

(Multiple Choice)
4.8/5
(40)

The table shows the numbers ana _ { n } (in thousands)of residents from 2002 through 2007. Number of residents, . Year . 2002 640 2003 655 2004 670 2005 670 2006 683 2007 699 ​ Find the first differences of the data shown in the table.

(Multiple Choice)
4.8/5
(29)

Use mathematical induction to solve for all positive integers n.​ 16+34+52+70++(18n2)=?16 + 34 + 52 + 70 + \ldots + ( 18 n - 2 ) = ?

(Multiple Choice)
4.8/5
(36)

Find a quadratic model for the sequence with the indicated terms. a0=5,a2=5,a5=65a _ { 0 } = 5 , a _ { 2 } = 5 , a _ { 5 } = 65

(Multiple Choice)
4.7/5
(44)

Find the sum using the formulas for the sums of powers of integers. n=19n3\sum _ { n = 1 } ^ { 9 } n ^ { 3 }

(Multiple Choice)
4.9/5
(29)

Write the first six terms of the sequence beginning with the given term.Then calculate the first and second differences of the sequence.State whether the sequence has a linear model,a quadratic model,or neither. ​ A1 = 0 An = an - 1 + 5 ​

(Multiple Choice)
4.8/5
(33)

Use mathematical induction to solve for all positive integers n. ​ A factor of (n3+7n2+6n)\left( n ^ { 3 } + 7 n ^ { 2 } + 6 n \right) is: ​

(Multiple Choice)
4.8/5
(44)

Use mathematical induction to solve for all positive integers n.​ 22+27+32+37++(5n17)=?22 + 27 + 32 + 37 + \ldots + ( 5 n - 17 ) = ?

(Multiple Choice)
4.7/5
(34)

Find the sum using the formulas for the sums of powers of integers.​ i=17(5i8i3)\sum _ { i = 1 } ^ { 7 } \left( 5 i - 8 i ^ { 3 } \right)

(Multiple Choice)
4.9/5
(46)
Showing 21 - 40 of 48
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)