Exam 47: Matrices and Systems of Equations

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Write the system of linear equations represented by the augmented matrix.(Use variables x,y,z,and w. ) [1004:53700:30481:60037:7]\left[\begin{array}{rrrrl}1 & 0 & 0 & 4 & :-5\\3 & -7 & 0 & 0 & :3\\0&-4&8&-1&:-6 \\0 & 0 & 3 & 7 &:7\end{array}\right]

(Multiple Choice)
4.8/5
(33)

Solve the system using Gauss-Jordan elimination.​ {w+x=9w+y=0x+z=0\left\{ \begin{array} { l } w + x = 9 \\w + y = 0 \\x + z = 0\end{array} \right.

(Multiple Choice)
4.8/5
(36)

Use matrices to solve the system of equations (if possible).Use Gaussian elimination with back-substitution or Gauss-Jordan elimination.​ {x+yz=202xy+z=293x+2y+z=29\left\{ \begin{array} { r l c } - x + y - z & = - 20 \\2 x - y + z & = 29 \\3 x + 2 y + z & = 29\end{array} \right.

(Multiple Choice)
4.9/5
(35)

Use matrices to solve the system of equations (if possible).Use Gaussian elimination with back-substitution or Gauss-Jordan elimination. {7x6y=405x+7y=34\left\{ \begin{aligned}7 x - 6 y & = - 40 \\- 5 x + 7 y & = 34\end{aligned} \right.

(Multiple Choice)
4.8/5
(34)

Solve the system by Gauss - Jordan elimination.​ {13x+34y23z=4x+12y+13z=3016x18yz=30\left\{ \begin{aligned}\frac { 1 } { 3 } x + \frac { 3 } { 4 } y - \frac { 2 } { 3 } z & = - 4 \\x + \frac { 1 } { 2 } y + \frac { 1 } { 3 } z & = 30 \\\frac { 1 } { 6 } x - \frac { 1 } { 8 } y - z & = - 30\end{aligned} \right.

(Multiple Choice)
4.8/5
(25)

Determine the order of the matrix. [677967]\left[ \begin{array} { r r r } 6 & - 7 & 7 \\9 & 6 & 7\end{array} \right]

(Multiple Choice)
4.7/5
(37)

Perform the sequence of row operations on the matrix.What did the operations accomplish?​ [1174571335]\left[ \begin{array} { c c c } 1 & 1 & - 7 \\4 & 5 & - 7 \\1 & 3 & 35\end{array} \right] ​ Add -4 times R1 to R2, Add -1 times R1 to R3, Add -2 times R2 to R3, Add -1 times R2 to R1. ​

(Multiple Choice)
4.9/5
(39)

Use matrices to solve the system of equations (if possible).Use Gaussian elimination with back-substitution or Gauss-Jordan elimination.​ {x+2y=62x+y=9\left\{ \begin{array} { l } x + 2 y = 6 \\2 x + y = 9\end{array} \right.

(Multiple Choice)
4.8/5
(39)

Fill in the blank(s)using elementary row operations to form a row-equivalent matrix. ​​ [694547]\left[ \begin{array} { c c c } 6 & 9 & 4 \\5 & - 4 & 7\end{array} \right][243547]\left[ \begin{array} { c c c } 2 & \cdots & \frac { 4 } { 3 } \\5 & - 4 & 7\end{array} \right]

(Multiple Choice)
4.9/5
(40)

Determine whether the matrix is in row-echelon form.If it is,determine if it is also in reduced row-echelon form. [188401060019]\left[ \begin{array} { r r r r } 1 & 8 & - 8 & 4 \\0 & 1 & 0 & 6 \\0 & 0 & 1 & - 9\end{array} \right]

(Multiple Choice)
4.7/5
(34)

Select the augmented matrix for the system of linear equations.​ {8x4y+z=1416x9z=12\left\{ \begin{aligned}8 x - 4 y + z & = 14 \\16 x - 9 z & = 12\end{aligned} \right.

(Multiple Choice)
4.8/5
(36)

Write the matrix in reduced row-echelon form. [451131113517]\left[ \begin{array} { r r r } 4 & 5 & 11 \\3 & 1 & - 11 \\3 & 5 & 17\end{array} \right]

(Multiple Choice)
4.8/5
(37)

Find the system of linear equations represented by the augmented matrix.Then use back substitution to solve.(Use variables x,y,z and if applicable. )​ [116801160016]\left[\begin{array}{l}{\begin{array}{cccc}1 & -1 & 6 & \vdots8\end{array}} \\\begin{array}{llll}0 & 1 & -1 & \vdots6\end{array} \\\begin{array}{llll}0 & 0 & -1 & \vdots-6\end{array} \\\end{array}\right]

(Multiple Choice)
4.8/5
(34)

Use matrices to solve the system of equations (if possible).Use Gaussian elimination with back-substitution or Gauss-Jordan elimination.​ {x4y+3z2w=103x2y+z4w=224x+3y2z+w=22x+y4z+3w=10\left\{ \begin{aligned}x - 4 y + 3 z - 2 w & = 10 \\3 x - 2 y + z - 4 w & = - 22 \\- 4 x + 3 y - 2 z + w & = - 2 \\- 2 x + y - 4 z + 3 w & = - 10\end{aligned} \right.

(Multiple Choice)
4.9/5
(46)

Select the order for the following matrix.​ [987053]\left[ \begin{array} { r r r } - 9 & 8 & 7 \\0 & - 5 & 3\end{array} \right]

(Multiple Choice)
4.9/5
(35)

Determine whether the following matrix is in row-echelon form.If it is,determine if it is also in reduced row-echelon form. ​​ [101001030010]\left[ \begin{array} { l l l l } 1 & 0 & 1 & 0 \\0 & 1 & 0 & 3 \\0 & 0 & 1 & 0\end{array} \right]

(Multiple Choice)
4.9/5
(41)

Write the matrix in reduced row-echelon form. [96333811477768]\left[ \begin{array} { r r r r } 9 & - 6 & - 3 & - 33 \\8 & - 1 & 1 & - 47 \\- 7 & - 7 & 6 & - 8\end{array} \right]

(Multiple Choice)
4.9/5
(30)

Use matrices to solve the system of equations (if possible).Use Gaussian elimination with back-substitution or Gauss-Jordan elimination. {2x+9y=359x+2y=30\left\{ \begin{aligned}2 x + 9 y & = - 35 \\- 9 x + 2 y & = 30\end{aligned} \right.

(Multiple Choice)
4.8/5
(28)

Use matrices to solve the system of equations (if possible).Use Gaussian elimination with back-substitution or Gauss-Jordan elimination.​ {4x+9y+z=176x6y8z=129x+8y+z=43\left\{ \begin{array} { c } 4 x + 9 y + z = - 17 \\6 x - 6 y - 8 z = 12 \\9 x + 8 y + z = - 43\end{array} \right.

(Multiple Choice)
4.9/5
(37)

An augmented matrix that represents a system of linear equations (in variables x,y,z and w if applicable)has been reduced using Gauss-Jordan elimination.Find the solution represented by the augmented matrix.​ [105016]\left[\begin{array}{lll}1 & 0 & \vdots 5\\0 & 1 & \vdots -6\\\end{array} \right]

(Multiple Choice)
4.8/5
(32)
Showing 21 - 40 of 65
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)