Exam 47: Matrices and Systems of Equations

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Write the augmented matrix for the system of linear equations. {x+7y+7z=63y+3z=6x+7z=7\left\{ \begin{aligned}x + 7 y + 7 z & = - 6 \\3 y + 3 z & = 6 \\x + 7 z & = - 7\end{aligned} \right.

(Multiple Choice)
4.7/5
(39)

Determine whether the two systems of linear equations yield the same solutions.If so,find the solutions using matrices. {xy6z=33y+3z=18z=4\left\{ \begin{aligned}x - y - 6 z & = - 33 \\y + 3 z & = 18 \\z & = 4\end{aligned} \right. {x7y3z=57y9z=30z=4\left\{ \begin{array} { r l r } x - 7 y - 3 z & = - 57 \\y - 9 z & = - 30 \\z & = 4\end{array} \right.

(Multiple Choice)
4.7/5
(39)

Determine whether the two systems of linear equations yield the same solutions.If so,find the solutions using matrices. {x+2y4z=8y7z=4z=1\left\{ \begin{aligned}x + 2 y - 4 z & = - 8 \\y - 7 z & = 4 \\z & = - 1\end{aligned} \right. {xy5z=21y6z=3z=1\left\{ \begin{aligned}x - y - 5 z & = 21 \\y - 6 z & = 3 \\z & = - 1\end{aligned} \right.

(Multiple Choice)
4.7/5
(30)

Fill in the blank(s)using elementary row operations to form a row-equivalent matrix.​ [111524]\left[ \begin{array} { c c c } 1 & 1 & 1 \\5 & - 2 & 4\end{array} \right] [11101]\left[ \begin{array} { c c c } 1 & 1 & 1 \\0 & \cdots & - 1\end{array} \right]

(Multiple Choice)
5.0/5
(37)

Write the system of linear equations represented by the augmented matrix.Then use back-substitution to solve.(Use variables x,y,and z. ) [12534012140015]\left[\begin{array}{rrrrrr}1 & 2 & 5 & \vdots & 34 \\0 & 1 & 2 & \vdots & 14 \\0 & 0 & 1 & \vdots & 5\end{array}\right]

(Multiple Choice)
4.9/5
(40)
Showing 61 - 65 of 65
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)