Exam 34: Sum and Difference Formulas

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the exact value of the given expression using a sum or difference formula. sin285\sin 285 ^ { \circ }

(Multiple Choice)
4.7/5
(25)

Find the exact value of the given expression. sin(2π35π4)\sin \left( \frac { 2 \pi } { 3 } - \frac { 5 \pi } { 4 } \right)

(Multiple Choice)
4.7/5
(39)

Simplify the expression algebraically.​ 3sin(π2x)3 \sin \left( \frac { \pi } { 2 } - x \right)

(Multiple Choice)
4.7/5
(40)

Verify the given identity. cos(x+y)cos(xy)=cos2xsin2y\cos ( x + y ) \cos ( x - y ) = \cos ^ { 2 } x - \sin ^ { 2 } y

(Essay)
4.8/5
(29)

Write the given expression as the sine of an angle. sin45cos55sin5545\sin 45 ^ { \circ } \cos 55 ^ { \circ } - \sin 55 ^ { \circ } 45 ^ { \circ }

(Multiple Choice)
4.9/5
(44)

Find the exact value of cos(u+v)\cos ( u + v ) given that sinu=513\sin u = \frac { 5 } { 13 } and cosv=45\cos v = - \frac { 4 } { 5 } .(Both u and v are in Quadrant II. )

(Multiple Choice)
4.9/5
(36)

Find the exact value of the given expression. sin105cos345sin345cos105\sin 105 ^ { \circ } \cos 345 ^ { \circ } - \sin 345 ^ { \circ } \cos 105 ^ { \circ }

(Multiple Choice)
4.9/5
(37)

Simplify the expression algebraically.​ 92cos(5π4x)\frac { 9 } { \sqrt { 2 } } \cos \left( \frac { 5 \pi } { 4 } - x \right)

(Multiple Choice)
4.9/5
(38)

Find the exact solutions of the given equation in the interval [0,2π). sin 2x = sin x ​

(Multiple Choice)
4.8/5
(40)

Simplify the expression algebraically.​ 6sin(π2+x)6 \sin \left( \frac { \pi } { 2 } + x \right)

(Multiple Choice)
4.8/5
(34)

Simplify the following expression algebraically.​ cos(3π2x)\cos \left( \frac { 3 \pi } { 2 } - x \right)

(Multiple Choice)
4.9/5
(33)

Simplify the given expression algebraically.​ cos(xπ)\cos ( x - \pi )

(Multiple Choice)
4.8/5
(32)

Write the given expression as the cosine of an angle.​ cos45cos40+sin45sin40\cos 45 ^ { \circ } \cos 40 ^ { \circ } + \sin 45 ^ { \circ } \sin 40 ^ { \circ }

(Multiple Choice)
4.8/5
(36)

Find the exact value of the given expression. sin(π3π4)\sin \left( \frac { \pi } { 3 } - \frac { \pi } { 4 } \right)

(Multiple Choice)
4.9/5
(32)

Use the formula asinBθ+bcosBθ=a2+b2cos(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) ,where C=arctan(a/b),a=3,b=7,B=2C = \arctan ( a / b ) , a = 3 , b = 7 , B = 2 to rewrite the trigonometric expression in the following form.​ y=a2+b2cos(BθC)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C )asinBθ+bcosBθa \sin B \theta + b \cos B \theta

(Multiple Choice)
4.9/5
(39)

Use the formula asinBθ+bcosBθ=a2+b2cos(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) ,where C=arctan(a/b),a=9,b=2,B=2C = \arctan ( a / b ) , a = 9 , b = 2 , B = 2 to rewrite the trigonometric expression in the following form.​ y=a2+b2cos(BθC)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C )asinBθ+bcosBθa \sin B \theta + b \cos B \theta

(Multiple Choice)
4.8/5
(29)

Use a graphing utility to select correct graph of y1y _ { 1 } and y2y _ { 2 } in the same viewing window.Use the graphs to determine whether y1=y2y _ { 1 } = y _ { 2 } .Explain your reasoning.​ y1=sin(x+6),y2=sin(x)+sin(6)y _ { 1 } = \sin ( x + 6 ) , y _ { 2 } = \sin ( x ) + \sin ( 6 )

(Multiple Choice)
4.9/5
(31)

Simplify the expression algebraically.​ cos(7x+4y)cos(7x4y)\cos ( 7 x + 4 y ) \cos ( 7 x - 4 y )

(Multiple Choice)
4.9/5
(37)

Write the given expression as the cosine of an angle. cos60cos25sin60sin25\cos 60 ^ { \circ } \cos 25 ^ { \circ } - \sin 60 ^ { \circ } \sin 25 ^ { \circ }

(Multiple Choice)
4.8/5
(34)

Find the expression as the tangent of an angle.​ tan130tan301+tan130tan30\frac { \tan 130 ^ { \circ } - \tan 30 ^ { \circ } } { 1 + \tan 130 ^ { \circ } \tan 30 ^ { \circ } }

(Multiple Choice)
4.9/5
(42)
Showing 41 - 60 of 62
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)